首页> 外文学位 >Mode I fracture modeling of elastomer toughened polymers, adhesive joints, and composite materials.
【24h】

Mode I fracture modeling of elastomer toughened polymers, adhesive joints, and composite materials.

机译:弹性体增韧的聚合物,粘合剂接头和复合材料的模式I断裂模型。

获取原文
获取原文并翻译 | 示例

摘要

Analytical models are developed to correlate Mode I fracture toughness of polymer based material systems with microstructural energy dissipation mechanisms occurring around the crack tip. The material systems include elastomer toughened polymers, polymer adhesive joints, and polymer composite materials. In the Mode I fracture modeling of toughened polymers and their adhesive joints, the total energy dissipation caused by three dominant damage modes, namely, plastic shear band formation, plastic void growth, and plastic deformation of the entire matrix resin, is used as the basis to derive the analytical expression for the Mode I fracture toughness of these material systems. In the Mode I interlaminar fracture modeling of toughened polymer composites, interfacial failure at the fiber-resin interface is considered as an additional energy dissipation mechanism. Numerical results are presented, and compared with the available experimental data for some typical polymer material systems. The parametric results involving a number of material and microstructural variables indicate some very interesting trends, and provide some guidelines toward achieving optimum fracture toughness values for these types of material systems. In the analysis of polymer adhesive joints, numerical results show that L the proposed models can predict well the effects of adhesive thickness on the Mode I fracture toughness of toughened epoxy adhesive joints. It is emphasized that the proposed models can be used to quantitatively evaluate the contributions of various energy dissipation mechanisms on the Mode I interlaminar fracture toughness for many kinds of polymer composite laminates. The results of the analysis show that the energy dissipation due to the interfacial failure at the fiber-resin interface plays an important role in the interlaminar crack growth resistance of these composite systems. It is concluded that the control of the thickness of the resin-rich layer and the fiber volume fraction is a key to the enhancement of the Mode I interlaminar fracture toughness of the polymer composite systems. Further validity and use of the proposed theoretical models require experimental and/or analytical evaluation of all the unknown parameters.
机译:开发了分析模型以使基于聚合物的材料系统的I型断裂韧性与裂纹尖端周围发生的微结构能量耗散机制相关联。材料系统包括弹性体增韧的聚合物,聚合物粘合接头和聚合物复合材料。在增韧聚合物及其粘合接头的I型断裂模型中,以塑性剪切带形成,塑性空隙增长和整个基体树脂的塑性变形这三种主要破坏模式引起的总能量耗散为基础。得出这些材料系统的I型断裂韧性的解析表达式。在增韧聚合物复合材料的I型层间断裂模型中,纤维-树脂界面的界面破坏被认为是一种附加的能量耗散机制。给出了数值结果,并将其与某些典型聚合物材料系统的可用实验数据进行了比较。涉及许多材料和微观结构变量的参数结果表明了一些非常有趣的趋势,并为实现这些类型的材料系统的最佳断裂韧性值提供了一些指导。在对聚合物胶粘接头的分析中,数值结果表明,所提出的模型可以很好地预测胶粘剂厚度对增韧环氧胶粘接头的I型断裂韧性的影响。需要强调的是,所提出的模型可用于定量评估多种能量耗散机制对多种聚合物复合材料层压板的I型层间断裂韧性的贡献。分析结果表明,纤维-树脂界面处界面破坏引起的能量耗散在这些复合体系的层间裂纹扩展阻力中起着重要作用。可以得出结论,控制富树脂层的厚度和纤维体积分数是增强聚合物复合材料系统的I型层间断裂韧性的关键。建议的理论模型的进一步有效性和使用要求对所有未知参数进行实验和/或分析评估。

著录项

  • 作者

    Tohdoh, Mitsugu.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Materials science.;Mechanics.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号