首页> 外文学位 >Vibrational energy transfer in condensed high explosives: Nitromethane.
【24h】

Vibrational energy transfer in condensed high explosives: Nitromethane.

机译:浓缩高炸药中的振动能量传递:硝基甲烷。

获取原文
获取原文并翻译 | 示例

摘要

Molecular mechanical energy transfer in energetical materials is investigated because of the likely possibility of a relationship between energy transfer rates and impact sensitivities. Picosecond coherent Raman scattering, and anti-Stokes Raman spectroscopy following an ultrafast temperature and pressure jump, are used to study vibrational energy relaxation and multiphonon up-pumping in a high explosive nitromethane (NM). The relationships between these energy transfer processes and shock wave-induced initiation to detonation are discussed. The principal mechanism of vibrational cooling in solid NM below 150 K is shown to be a vibrational ladder relaxation process giving rise to a vibrational cascade occurring on the {dollar}>{dollar}100-ps time scale. Ambient temperature up-pumping measurements show the 657- and 918- cm{dollar}sp{lcub}-1{rcub}{dollar} vibrations are populated sequentially, and therefore vibrational ladder climbing is involved. The overall time scale for up-pumping is {dollar}approx{dollar}100 ps, which is consistent with what would be predicted from low-temperature CARS measurements, provided the ladder mechanism remained dominant at all temperatures. These measurements yield an estimate for the width of the up-pumping region behind weak shock waves characteristics of initiation process of {dollar}lsb{lcub}rm up{rcub}approx2times10sp{lcub}-7{rcub}{dollar} m. Vibrational cooling in the liquid high explosive nitromethane (NM) is studied by picosecond infrared pumping of C-H stretching vibrations ({dollar}approx{dollar}3000 cm{dollar}sp{lcub}-1{rcub}{dollar}) and picosecond incoherent anti-Stokes Raman probing of six lower energy Raman-active vibrations in the 480-1400 cm{dollar}sp{lcub}-1{rcub}{dollar} range. Vibrational cooling of C-H excited NM is shown to require at least 200 ps. During vibrational cooling, substantial transient overheating is observed in the high energy vibrations in the 900-1400 cm{dollar}sp{lcub}-1{rcub}{dollar} range. Overheating refers to instantaneous vibrational quasitemperatures which are temporally greater than the final temperature of the bulk liquid. The overheating and the increasing delay in the rise of excitation in certain vibrations is used to infer that ladder (cascade) type vibrational cooling processes are important in ambient temperature NM. Molecular thermometry is used to estimate the absolute efficiencies of energy transfer between some of the pumped and probed vibrations. This detailed study of energy transfer in a high explosive presents a more complete picture than the relatively simplified theoretical models for energetical material initiation presently in use.
机译:由于能量转移速率和冲击敏感性之间可能存在关系,因此对高能材料中的分子机械能转移进行了研究。皮秒相干拉曼散射和超斯托克斯拉曼光谱在超快温度和压力跃变之后用于研究高爆炸性硝基甲烷(NM)中的振动能弛豫和多声子上泵。讨论了这些能量转移过程与冲击波引发的爆炸起爆之间的关系。在低于150 K的固体NM中,振动冷却的主要机理显示为振动梯形松弛过程,该过程引起了在100美元/秒的时间尺度上发生的振动级联。环境温度上升泵的测量结果表明,相继产生了657-cm和918-cm {dol} sp {lcub} -1 {rcub} {dollar}振动,因此涉及了爬梯振动。如果在所有温度下梯形机构仍然占主导地位,则上泵的总时间比例为{dollar}约{dollar} 100 ps,这与低温CARS测量所预测的一致。通过这些测量,可以估算出{dollar} lsb {lcub} rm up {rcub}大约2乘10sp {lcub} -7 {rcub} {dollar} m的引发过程的弱冲击波后的上泵送区域的宽度。通过皮秒红外泵浦的CH拉伸振动({dollar}大约{dollar} 3000 cm {dollar} sp {lcub} -1 {rcub} {dollar})和皮秒不相干来研究液态高爆炸性硝基甲烷(NM)中的振动冷却在480-1400 cm {dol} sp {lcub} -1 {rcub} {dollar}范围内的六个较低能量的拉曼主动振动的反斯托克斯拉曼探测。 C-H激发的NM的振动冷却显示至少需要200 ps。在振动冷却期间,在900-1400 cm {dol} sp {lcub} -1 {rcub} {dollar}范围内的高能振动中观察到了明显的瞬态过热。过热是指瞬时振动的准温度,该准温度在时间上大于散装液体的最终温度。某些振动中的过热和激励上升的增加延迟被用来推断梯形(级联)式振动冷却过程在环境温度NM中很重要。分子测温法用于估算某些泵浦振动和探测振动之间的能量转移绝对效率。与目前使用的高能材料引发的相对简化的理论模型相比,对高能炸药中的能量传递进行的详细研究提供了更完整的描述。

著录项

  • 作者

    Chen, Sheah.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 94 p.
  • 总页数 94
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理化学(理论化学)、化学物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号