首页> 外文学位 >Physically-motivated modeling of deformation-induced anisotropy.
【24h】

Physically-motivated modeling of deformation-induced anisotropy.

机译:形变各向异性的物理建模。

获取原文
获取原文并翻译 | 示例

摘要

Deformation-induced anisotropy from initially isotropic polycrystalline metals is manifested through material responses and morphological changes. When a metal deforms, the complex interactions of the grain structure, lattice orientation, and dislocation substructure induce evolving elastic and plastic anisotropy. To construct a physically-based unified-creep-plasticity (UCP) constitutive framework, continuum slip polycrystal elastoviscoplasticity was used, which builds on the physical description at the scale of the grain. Physical realities are missing in both macroscale and mesoscale models; hence all possible anisotropic effects have not been included in constitutive frameworks represented by the two length scales.; This work elucidated and unified length scale issues in mesoscale polycrystalline and macroscale UCP models. A continuum slip polycrystal elastoviscoplasticity formulation, which includes scalar and second rank internal state variables, was developed and used to used to show better comparisons than the Taylor model for texture evolution and stress-strain behavior of OFHC Cu and 304L stainless steel at room temperature and quasistatic strain rates. Experiments considered include compression, torsion, and non-monotonic sequence tests. To understand which elements of the polycrystal elastoviscoplasticity theory were most influential in establishing guidelines for macroscale modeling, a statistical design of experiments study was performed. This study showed that slip level kinematic hardening and intergranular constraints had the strongest influence in affecting macroscale responses (effective stress, hardening rate, plastic spin, etc.). Strain path change experiments were performed to help constitutive developments better reflect the physics of hardening and flow, focusing on grain subdivision processes, generation of geometrically necessary boundaries, and the intermediate configuration and elasticity formulation. A thermoviscoplastic UCP model, which includes an internal state variable representing the effects of texture and dislocation substructures by use of the third invariant of overstress, was developed which characterized material response behavior differently than {dollar}Jsb2{dollar} theory. Guidelines were developed for incorporating an evolution equation for texture/substructure into a UCP model. The UCP model was implemented into the ABAQUS and PRONTO finite element programs and used to solve a complex, nonlinear boundary value problem (localization and failure as related to the forming limit diagram).
机译:最初由各向同性的多晶金属引起的形变各向异性通过材料响应和形态变化得以体现。当金属变形时,晶粒结构,晶格取向和位错亚结构的复杂相互作用会引起弹性和塑性各向异性的发展。为了构建基于物理的统一蠕变可塑性(UCP)本构框架,使用了连续体滑移多晶弹性粘塑性,它基于晶粒度的物理描述。宏观和中尺度模型都缺少物理现实。因此,所有可能的各向异性效应都没有包括在两个长度尺度所代表的本构框架中。这项工作阐明了中尺度多晶和宏观UCP模型中统一的长度尺度问题。开发了包括标量和二级内部状态变量的连续滑移多晶弹性粘塑性公式,并用于显示比泰勒模型更好的比较,用于比较在室温下OFHC Cu和304L不锈钢的织构演变和应力应变行为。准静态应变率。考虑的实验包括压缩,扭转和非单调序列测试。为了了解多晶弹性粘弹性理论中的哪些元素在建立宏观建模指南中最有影响力,进行了实验研究的统计设计。这项研究表明,滑动水平运动硬化和晶间约束对影响宏观响应(有效应力,硬化速率,塑性旋转等)影响最大。进行了应变路径变化实验,以帮助本构发展更好地反映硬化和流动的物理现象,重点是晶粒细分过程,必要的几何边界生成以及中间构型和弹性公式化。建立了热粘塑性UCP模型,该模型包含一个内部状态变量,该变量通过使用过应力的第三个不变量来表示纹理和位错亚结构的影响,该模型表征材料响应行为的方式不同于{Jsb2}美元理论。制定了将纹理/子结构的演化方程纳入UCP模型的准则。 UCP模型已实施到ABAQUS和PRONTO有限元程序中,并用于解决复杂的非线性边界值问题(与成形极限图有关的定位和破坏)。

著录项

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Applied Mechanics.; Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 291 p.
  • 总页数 291
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号