首页> 外文学位 >Orbit analysis and maneuver design for the Geoscience Laser Altimeter System.
【24h】

Orbit analysis and maneuver design for the Geoscience Laser Altimeter System.

机译:地球科学激光测高仪系统的轨道分析和机动设计。

获取原文
获取原文并翻译 | 示例

摘要

The Geoscience Laser Altimeter System (GLAS) of the Earth Observing System (EOS) is planned to make ice sheet elevation measurements over Antarctica and Greenland. Measurements of ice sheet elevation distribution will be used to determine the polar ice sheet volume changes and their contributions to global sea level as well as the contribution to Earth's global climate change. Since the laser altimetry of the ice sheet requires highly accurate knowledge of the satellite and since GLAS requires a near circular low altitude orbit, the use of a frozen orbit is suggested to restrict the variations of orbital elements and altitude. The frozen orbit was studied earlier by G. E. Cook and many authors extended his work thereafter. This research includes a new representation with higher even and odd degree zonal harmonics in the frozen orbit analysis to get a complete form of solutions as well as linear, quadratic and cubic polynomial approximations. These analytic solutions are sufficiently accurate to meet the orbit planning requirements for the GLAS mission.; Ice science requires a near-polar orbit for adequate coverage of the ice sheet and a long repeat ground track cycle. Thus the maneuver design for the GLAS orbit needs accurate ground track prediction and propagation including the effects of geopotential, luni-solar, atmospheric drag perturbations and others. One purpose of this research is to obtain analytic ground track prediction and propagation error models that satisfy GLAS mission requirements and orbit control requirements. Based on the atmospheric science and the orbit maneuver analysis, the 11 day repeat orbit is optimal for the calibration and verification phase. Polar science analysis suggests that the 183 day repeat orbit with the 11 day subcycle meets the spatial and temporal sampling requirements during the polar mapping phase. The University of Texas Orbit Processor (UTOPIA) software is used to achieve estimation of new initial conditions for more complete force model for both 11 day and 183 day repeat orbits.
机译:地球观测系统(EOS)的地球科学激光测高仪系统(GLAS)计划在南极洲和格陵兰岛进行冰盖高程测量。冰盖海拔高度分布的测量将用于确定极地冰盖体积变化及其对全球海平面的贡献以及对地球全球气候变化的贡献。由于冰盖的激光测高需要对卫星有高度准确的了解,并且由于GLAS需要接近圆形的低空轨道,因此建议使用冰冻轨道来限制轨道元素和高度的变化。库克(G. E. Cook)较早地研究了冰冻的轨道,此后许多作者扩展了他的工作。这项研究包括在冻结轨道分析中具有更高偶数和奇数带状谐波的新表示形式,以获得完整形式的解以及线性,二次和三次多项式逼近。这些分析解决方案足够精确,可以满足GLAS任务的轨道规划要求。冰科学需要近极轨道来充分覆盖冰盖,并需要较长的重复地面跟踪周期。因此,GLAS轨道的机动设计需要准确的地面轨迹预测和传播,包括地势,单日太阳能,大气阻力扰动等的影响。这项研究的目的之一是获得满足GLAS任务要求和轨道控制要求的解析地面轨迹预测和传播误差模型。根据大气科学和轨道操纵分析,为期11天的重复轨道是校准和验证阶段的最佳选择。极地科学分析表明,以第11天为子周期的183天重复轨道符合极坐标制图阶段的空间和时间采样要求。德克萨斯大学轨道处理器(UTOPIA)软件用于为11天和183天重复轨道的更完整的力模型实现新的初始条件的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号