首页> 外文学位 >MRI pulse shaping using inverse scattering and optimization.
【24h】

MRI pulse shaping using inverse scattering and optimization.

机译:使用反向散射和优化的MRI脉冲整形。

获取原文
获取原文并翻译 | 示例

摘要

Most magnetic resonance imaging (MRI) sequences employ field gradients and radio-frequency (rf) selective pulses to excite only those spins lying in a specific plane. The fidelity of the resulting magnetization distribution is crucial to overall image resolution. Due to the nonlinear relationship between a pulse envelope and its resultant magnetization distribution, there is no simple inversion formula to guide the design of selective rf pulses. Conventional rf pulse design techniques rely on the small tip-angle approximation to Bloch equations, which is inadequate for the design of 90{dollar}spcirc{dollar} and 180{dollar}spcirc{dollar} pulses. Recently, some researchers have reformulated the inverse Bloch transform problem as a two-component wave system inverse scattering problem of Zakharov-Shabat type. This thesis considers fast algorithms for solving these inverse scattering problems. Computer simulations show some of these results need improvements.; To address the deficiencies, an alternative optimization approach is developed. The full nonlinear Bloch equations are used and the pulse shapes are obtained by minimizing a measure of departure from the desired magnetization distribution. Solutions generated by the scattering problem approach provide good pulse shapes for starting the descent algorithms which are used in the optimization process. The optimized pulse shapes have a highly oscillatory behavior, which are successfully smoothed by adding a regularization term to the cost function. A variety of novel selective pulses are successfully developed. These pulses have been practically implemented on a commercial NMR imager and experimental results agree with the simulation results. The regularized formulation of the optimization technique is further applied to the design of two-dimensional (2D) spatially selective inverting pulses. The designed 2D inverting pulses have a maximum gradient slew rate about 3 times higher than the targeted hardware limit (2000G{dollar}cmsp{lcub}-1{rcub} ssp{lcub}-1{rcub}{dollar}) and the resultant {dollar}Msb{lcub}z{rcub}{dollar} profiles have only a few small ripples. Increases in slice thickness seem to be a consequence of lower gradient slew rates.
机译:大多数磁共振成像(MRI)序列采用场梯度和射频(rf)选择脉冲来仅激发位于特定平面中的自旋。最终磁化分布的保真度对于整体图像分辨率至关重要。由于脉冲包络与其产生的磁化分布之间存在非线性关系,因此没有简单的反演公式可指导选择性rf脉冲的设计。传统的RF脉冲设计技术依赖于Bloch方程的小顶角近似,这不足以设计90 {sp}的脉冲和180spcirc的脉冲。最近,一些研究人员将反布洛赫逆变换问题重新构造为Zakharov-Shabat型两分量波系统反散射问题。本文考虑了用于解决这些逆散射问题的快速算法。计算机仿真表明,其中一些结果需要改进。为了解决这些缺陷,开发了另一种优化方法。使用完整的非线性Bloch方程,并通过最小化偏离所需磁化分布的度量来获得脉冲形状。由散射问题方法生成的解决方案为启动优化过程中使用的下降算法提供了良好的脉冲形状。优化的脉冲形状具有高度振荡的行为,可以通过在成本函数中添加正则项来成功平滑。成功开发了各种新颖的选择脉冲。这些脉冲实际上已在商用NMR成像仪上实现,实验结果与仿真结果相符。优化技术的正规化公式可进一步应用于二维(2D)空间选择性反相脉冲的设计。设计的2D反相脉冲的最大斜率摆率比目标硬件极限(2000G {dollar} cmsp {lcub} -1 {rcub} ssp {lcub} -1 {rcub} {dollar}高约3倍) {dollar} Msb {lcub} z {rcub} {dollar}配置文件只有一些小的波动。切片厚度的增加似乎是较低的压摆率的结果。

著录项

  • 作者

    Chen, Shue-Er.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 187 p.
  • 总页数 187
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;生物医学工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号