首页> 外文学位 >Electromagnetic wave propagation and scattering in dense, discrete random media with application to remote sensing of snow.
【24h】

Electromagnetic wave propagation and scattering in dense, discrete random media with application to remote sensing of snow.

机译:电磁波在密集,离散随机介质中的传播和散射及其在雪的遥感中的应用。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation investigates wave propagation and scattering in dense, discrete random media using Monte Carlo simulations and analytic dense media theory. The Monte Carlo simulations use an exact numerical formulation based on the Foldy-Lax multiple scattering equations that allow computation of the incoherent field arising from scattering and absorption in systems of up to 5000 spheres with 40% fractional volume. The extinction coefficient obtained by simulation is compared to that obtained under classical methods and with dense media theory such. as quasi-crystalline approximation (QCA) and quasi-crystalline approximation with coherent potential (QCA-CP). For dense media, the independent scattering approximation overestimates the amount of scattering while scattering calculated under QCA-CP agrees well with both simulation and carefully controlled experiment. At high fractional volumes the simulations predict a slightly larger extinction than QCA-CP Monte Carlo simulations also predict the presence of absorption enhancement where the absorption coefficient exceeds that predicted under the independent absorption assumption.; The application of remote sensing of snow utilizes dense media radiative transfer (DMRT) theory to predict the redistribution of radiant energy. Monte Carlo simulations provide a means to accurately determine the quantities necessary for DMRT, namely the extinction coefficient, absorption coefficient, phase matrix and effective permittivity. The phase matrix thus obtained differs from the classical assumption by containing non-zero off-diagonal elements while the effective permittivity agrees well with mixing formulae. A second order iterative solution to DMRT produces bi-static scattering levels that are comparable to those seen in actual snow data.; The effect of the scatterer placement on the electromagnetic wave is investigated by modeling the adhesive character of the particles that causes them to clump together with a sticky-particle pair distribution function. The adhesive character may provide a more accurate depiction of particles that exist in clusters (for example snow grains). The effect of the sticky-particles on the electromagnetic wave is calculated analytically using QCA and numerically with Monte Carlo simulations with both predicting much stronger scattering due to the larger particles. Snow sections prepared stereologically are analyzed to determine a family of pair distribution functions that can be used to calculate the scattering from a log-normal distribution of particle sizes.
机译:本文利用蒙特卡洛模拟和解析密集介质理论研究了密集离散离散随机介质中的波传播和散射。蒙特卡洛模拟使用基于Foldy-Lax多重散射方程式的精确数值公式,该公式允许计算由多达5000个球体(分数体积为40)的系统中的散射和吸收引起的非相干场。将通过仿真获得的消光系数与经典方法和密集介质理论下的消光系数进行比较。准晶体近似(QCA)和相干势准晶体近似(QCA-CP)。对于稠密介质,独立的散射近似值高估了散射量,而在QCA-CP下计算的散射与模拟和精心控制的实验均吻合良好。在高分数体积下,该模拟预测的灭绝比QCA-CP更大,蒙特卡罗模拟也预测吸收增强的存在,其中吸收系数超过在独立吸收假设下预测的吸收系数。降雪遥感的应用是利用致密介质辐射传递(DMRT)理论来预测辐射能的重新分布。蒙特卡洛模拟提供了一种精确确定DMRT所需量的方法,即消光系数,吸收系数,相位矩阵和有效介电常数。由此获得的相位矩阵与经典假设的不同之处在于,它包含非零非对角线元素,而有效介电常数与混合公式非常吻合。 DMRT的二阶迭代解决方案产生的双静态散射水平与实际降雪数据中的水平相当。通过对粒子的黏附特性进行建模,研究了散射体放置对电磁波的影响,黏附特性使粒子与粘性粒子对分布函数聚在一起。粘合特性可以更准确地描述簇中存在的颗粒(例如雪粒)。粘性粒子对电磁波的影响是使用QCA进行分析计算的,并使用蒙特卡洛模拟进行数值计算,两者都预测由于较大的粒子会产生更强的散射。对通过立体方式准备的降雪部分进行分析,以确定可以用于从对数正态分布的粒度计算散射的成对分布函数族。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号