首页> 外文学位 >Response of mud shore profiles to waves.
【24h】

Response of mud shore profiles to waves.

机译:泥岸轮廓对波浪的响应。

获取原文
获取原文并翻译 | 示例

摘要

The concept of a spatially uniform rate of wave energy dissipation, dominated by viscous dissipation due to wave-induced motion of the soft bed, has been used to develop an analytic model of mud shore profile geometry. In the derivation, exponential wave height decay with distance and shallow water linear wave theory have been used in the wave-averaged energy conservation equation with normal wave incidence. The derived analytic profile is capable of predicting both concave-upward (erosional) and convex-upward (accretionary) nearshore mud profiles. The modality of profile change is dependent on the profile-averaged wave attenuation coefficient, {dollar}bar ksb{lcub}i{rcub}{dollar}, which characterizes the fluidization potential of mud. The parameter {dollar}bar ksb{lcub}i{rcub}{dollar} is shown to be a function of mud rheology, which, in turn, depends on the incident wave height. A high {dollar}bar ksb{lcub}i{rcub}{dollar} indicates the presence of a thick fluid mud layer; transport of the fluid mud elsewhere leads to an erosional profile. Conversely, a lower {dollar}bar ksb{lcub}i{rcub}{dollar} implies low wave height and an accretionary profile. By varying {dollar}bar ksb{lcub}i{rcub}{dollar}, the analytic profile is shown to reproduce the varying shapes of mud profiles from several field sites. Comparison of best-fit {dollar}bar ksb{lcub}i{rcub}{dollar} with that obtained from measured wave height decay in two field applications also shows close agreement.; Profile evolution is then simulated using a closed-loop approach whereby the analytic profile shape serves as the target profile toward which an initial, non-equilibrium profile eventually converges under constant wave forcing. The governing dynamic equation for cross-shore sediment transport, together with the volumetric sediment conservation equation, are numerically solved for transient profiles using an implicit finite difference formulation. The profile evolution model is shown to reproduce noteworthy features of the observed seasonal change in profile shape along a muddy coastline within the Southwest Louisiana chenier plain.; A laboratory investigation using a sunken flume with clayey shore profiles subjected to monochromatic wave condition was conducted. Comparison of the best-fit {dollar}bar ksb{lcub}i{rcub}{dollar} for a profile at the end of the test run to that calculated from the measured wave height envelope is shown to yield fairly close agreement.
机译:波浪能量耗散的空间均匀速率的概念(由于软床的波浪诱导运动而受到粘性耗散的支配)已被用于开发泥浆岸坡几何形状的解析模型。在推导过程中,在具有正向波​​入射的平均波能量守恒方程中,采用了随距离的指数波高衰减和浅水线性波理论。导出的分析剖面能够预测近岸泥浆剖面(向上凹入(向上)和向上凸出(任意))。剖面变化的模态取决于剖面平均波衰减系数,它表征了泥浆的流化潜力。参数{dollar} bar ksb {lcub} i {rcub} {dollar}显示为泥浆流变学的函数,而泥浆流变学又取决于入射波的高度。 {bar} ksb {lcub} i {rcub} {dollar}较高表示存在较厚的流体泥层。流体泥浆在其他地方的运输会导致侵蚀。相反,较低的{bar} ksb {lcub} i {rcub} {dollar}表示低波高和增生曲线。通过改变{bar} ksb {lcub} i {rcub} {dollar},分析剖面被显示为从几个现场复制出不同形状的泥浆剖面。最佳拟合{bar} ksb {lcub} i {rcub} {dollar}与在两个现场应用中从测得的波高衰减得到的结果的比较也显示出密切的一致性。然后使用闭环方法模拟轮廓演化,其中解析轮廓形状用作目标轮廓,初始非平衡轮廓最终将在恒定波强迫下朝该目标轮廓收敛。使用隐式有限差分公式对瞬态剖面进行数值求解,以解决跨岸沉积物运输的控制动力学方程以及体积沉积物守恒方程。剖面演化模型显示出沿着西南路易斯安那州谢尼尔平原内的泥泞海岸线重现了观测到的剖面形状季节性变化的显着特征。进行了实验室调查,使用的沉槽具有在单色波条件下的粘性海岸轮廓。测试运行结束时的最佳拟合{dollar} bar ksb {lcub} i {rcub} {dollar}与根据测得的波高包络计算得出的轮廓的比较显示出相当接近的一致性。

著录项

  • 作者

    Lee, Say-Chong.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Civil.; Engineering Marine and Ocean.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;海洋工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号