首页> 外文学位 >Fabrication of silicon nitride ceramics by dispersing in situ formed nano silicon carbide phase.
【24h】

Fabrication of silicon nitride ceramics by dispersing in situ formed nano silicon carbide phase.

机译:通过分散原位形成的纳米碳化硅相来制造氮化硅陶瓷。

获取原文
获取原文并翻译 | 示例

摘要

{dollar}rm Sisb3Nsb4{dollar} ceramics have many excellent properties, and are expected to be used in many applications of structural materials under sever conditions, like high temperature atmosphere. The grain boundary phase result in poor mechanical properties, especially at high temperatures, so therefore the control of grain boundary phase properties is the most important factor. This work investigates three kinds of grain boundary controlling methods, i.e., (1) controlling of liquid phase content and quantity, (2) second phase dispersion and (3) whisker reinforcement.; (1) The liquid phase content is controlled by surface modification treatments. The grain shape changes from an elongated to an equiaxed shape, and decreases in size with increasing surface oxygen impurity phase content, which in turn the decreases the fracture toughness and critical flow size. (2) The nano SiC particles are formed by the in-situ reaction between the coated carbon and the surface silicon oxide impurity phase during hot-pressing. The precipitated SiC particles dispersed in three different locations, i.e., in the grain boundary phase, at the {dollar}rm Sisb3Nsb4{dollar}-{dollar}rm Sisb3Nsb4{dollar} interface and inside of the {dollar}beta{dollar}-{dollar}rm Sisb3Nsb4{dollar} grain. The {dollar}rm Sisb3Nsb4{dollar}-SiC interface does not have other impurity phases and microcracks, and both lattices connect directly without other impurity phases. The grain boundary is toughened by the precipitated nano SiC particles in the grain boundary phase or at the {dollar}rm Sisb3Nsb4{dollar}-{dollar}rm Sisb3Nsb4{dollar} interface to help {dollar}rm Sisb3Nsb4{dollar} grain boundary bridging without a glassy phase. The reacted carbon content increases with increasing surface impurity oxygen phase content. (3) The whisker-matrix interface conditions are controlled by carbon coating on the SiC whisker surfaces. The fracture toughness and bending strength are increased by carbon coated SiC whisker reinforcement in {dollar}rm Sisb3Nsb4{dollar} matrix. For carbon coated SiC whisker reinforced composite, the SiC phase is formed by the in-situ reaction between the coated carbon and the surface silicon oxide impurity phase on the SiC whisker during hot-pressing. The SiC whisker surfaces change from smooth to rough by the newly formed SiC phase. The rough surfaces act as a resistance of whisker pullout.; For non-coated {dollar}rm Sisb3Nsb4{dollar} powder, powder washing method is useful and simple process for toughening of monolithic {dollar}rm Sisb3Nsb4{dollar} ceramics. The high fracture toughness can be obtained by this washing method. The nano SiC particles dispersed {dollar}rm Sisb3Nsb4{dollar} ceramics can be obtained by this carbon coating method. This carbon coating method can also be applied to {dollar}rm Sisb3Nsb4{dollar} matrix whisker reinforced composite system. Surface oxidized {dollar}rm Sisb3Nsb4{dollar} powders and SiC whiskers, i.e., inferior powders and whiskers, can be used in this method. Thus, this carbon coating method is a useful, simple and low cost process for toughening of {dollar}rm Sisb3Nsb4{dollar} ceramics. (Abstract shortened by UMI.)
机译:Sisb3Nsb4 {dollar} rm陶瓷具有许多优异的性能,并有望在严酷条件下(例如高温气氛)用于结构材料的许多应用。晶界相导致较差的机械性能,特别是在高温下,因此控制晶界相性能是最重要的因素。这项工作研究了三种晶界控制方法,即(1)控制液相含量和数量,(2)第二相分散和(3)晶须增强。 (1)通过表面改性处理来控制液相含量。晶粒形状从拉长形状变为等轴形状,并且随着表面氧杂质相含量的增加而尺寸减小,这进而降低了断裂韧性和临界流动尺寸。 (2)通过热压过程中涂覆的碳与表面氧化硅杂质相之间的原位反应形成纳米SiC颗粒。沉淀的SiC颗粒分散在三个不同的位置,即在晶界相中的{dol} rm Sisb3Nsb4 {dollar}-{dol} rm Sisb3Nsb4 {dollar}界面和{dollar} beta {dollar}- {美元} rm Sisb3Nsb4 {美元}谷物。 Si的Sisb3Nsb4-SiC界面没有其他杂质相和微裂纹,两个晶格直接连接而没有其他杂质相。通过在晶界相中或在{rm} Sisb3Nsb4 {dollar}-{dollar} rm Sisb3Nsb4 {dollar}界面处析出的纳米SiC颗粒来强化晶界,以帮助{rm} Sisb3Nsb4 {dollar}晶界桥接没有玻璃状相。反应的碳含量随表面杂质氧相含量的增加而增加。 (3)晶须-基体的界面条件由SiC晶须表面的碳涂层控制。通过在{美元} rm Sisb3Nsb4 {美元}基体中进行碳包覆的SiC晶须增强,可以提高断裂韧性和弯曲强度。对于碳包覆的SiC晶须增强复合材料,SiC相是通过热压过程中包覆的碳与SiC晶须上的表面氧化硅杂质相之间的原位反应而形成的。 SiC晶须表面通过新形成的SiC相从光滑变为粗糙。粗糙的表面会阻止晶须拔出。对于未涂覆的{srm} rm Sisb3Nsb4 {dollar}粉末,粉末洗涤法是用于对整块{srm3} Sisb3Nsb4 {dollar}陶瓷进行增韧的有用且简单的工艺。通过该洗涤方法可以获得高的断裂韧性。通过这种碳涂覆方法可以得到分散的纳米SiC颗粒,其中Sisb3Nsb4 {dollar}陶瓷。这种碳涂层方法也可以应用于{s元} Sisb3Nsb4 {美元}基晶须增强复合材料体系。这种方法可以使用表面氧化的{rms} rm Sisb3Nsb4 {dollar}粉末和SiC晶须,即劣质的粉末和晶须。因此,该碳涂覆方法是用于使{srm} rm Sisb3Nsb4 {dollar}陶瓷增韧的有用,简单且低成本的方法。 (摘要由UMI缩短。)

著录项

  • 作者

    Yanai, Tomohiro.;

  • 作者单位

    Nagoya University (Japan).;

  • 授予单位 Nagoya University (Japan).;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.; Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;无机化学;
  • 关键词

  • 入库时间 2022-08-17 11:49:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号