首页> 外文学位 >Dynamic analysis, measurement, and control of cell growth in solid state polymeric foams.
【24h】

Dynamic analysis, measurement, and control of cell growth in solid state polymeric foams.

机译:固态聚合物泡沫中细胞生长的动态分析,测量和控制。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation addresses critical manufacturing issues associated with the automatic control of solid state microcellular foam processes and the beneficial attributes such control can provide to the accuracy and repeatability of the foams produced. The research addresses the topics of empirical process characterization, dynamic modeling, sensor design, and non-invasive structure inference.; Process characterization and dynamic modeling are applied to the solid state process for amorphous gas-polymer systems. The analytical and experimental techniques used are specifically demonstrated to be valid for polycarbonate-carbon dioxide system.; Four significant contributions were attained through the process characterization and modeling effort. First, the "nucleation phenomenon" was found to be s triaxial tensile failure process. Second, a self regulating mechanism is identified describing foam growth dynamics as a function of the interrelationship between the balance of gas in the cells and the cell walls, and the strength of the polymer in the cell walls as a function of dissolved gas concentration. The mechanism clearly identifies the strength transition at the effective glass transition temperature of the gas-polymer mixture as the dominant factor determining both the rate of foam expansion and the steady state structure of the foam produced in the solid state. Third, a simulation model for a polycarbonate sheet subject to time varying thermal and mass transport boundary conditions and was shown to accurately predict dynamic bulk void fraction response with a maximum dynamic error of 13% and maximum steady state error of 7%. Finally, the temperature of the gas-polymer mixture must never exceed the effective glass transition temperature of the clean base polymer otherwise the self regulating characteristics of the mixture will vanish and the foam cells will explode, coalesce, and collapse.; Methods of non-invasive structure inference are of significant interest as a means of monitoring the solid state process for the purpose of real-time control of foam structure. Spatially periodic interdigitated capacitive probes arrays with a discrete set of spatial wavelengths were examined in the research. A spatially periodic interdigitated probe array is constructed using a set of co-planar electrically conducting strips arranged parallel to each other. Alternating successive strips are connected to one of two electrode terminals. When an electrical potential is applied across the terminals the electrode strips produce an electric field that penetrates the specimen to a depth proportional to the spatial periodicity of the probe array. Two significant results were determined. First, the optimal sensor probe sensitivity to changes in material structure for a spatialty periodic capacitive probe of spatial period {dollar}lambda{dollar} is achieved when the electrode plate width for the high and low potential electrodes are equal and the interelectrode gap separating the two electrodes is as small as possible. Second, the probe array technology can be used to accurately estimate foam void fraction as a function of position normal to the probe-foam interface plane.
机译:本论文解决了与固态微孔泡沫工艺的自动控制相关的关键制造问题,这种控制的有益特性可以为所生产的泡沫的准确性和可重复性提供优势。该研究涉及经验过程表征,动态建模,传感器设计和非侵入性结构推断等主题。过程表征和动态建模已应用于无定形气体-聚合物系统的固态过程。特别证明了所使用的分析和实验技术对聚碳酸酯-二氧化碳系统有效。通过过程表征和建模工作获得了四个重要贡献。首先,发现“成核现象”是三轴拉伸破坏过程。其次,确定了一种自我调节机制,该机制将泡沫的生长动力学描述为泡孔中气体平衡与泡孔壁之间的相互关系的函数,而泡孔壁中聚合物的强度随溶解气体浓度的变化而变化。该机理清楚地确定了在气体-聚合物混合物的有效玻璃化转变温度下的强度转变是决定泡沫膨胀速率和固态产生的泡沫的稳态结构的主导因素。第三,用于聚碳酸酯板的模拟模型,该模型经受时变的热和质量输运边界条件,并被显示为以最大动态误差为13%和最大稳态误差为7%准确预测动态体积空隙率响应。最后,气体-聚合物混合物的温度不得超过清洁基础聚合物的有效玻璃化转变温度,否则混合物的自调节特性将消失,泡沫孔会爆炸,聚结和塌陷。作为用于实时控制泡沫结构的一种监测固态过程的方法,非侵入性结构推断方法引起了极大的兴趣。在研究中检查了具有空间波长离散集的空间周期叉指电容探头阵列。使用一组彼此平行布置的共面导电条构造空间周期性的叉指式探针阵列。交替的连续条带连接到两个电极端子之一。当在端子之间施加电势时,电极条会产生一个电场,该电场穿透样品至与探头阵列的空间周期性成比例的深度。确定了两个重要结果。首先,当高电位电极和低电位电极的电极板宽度相等,且电极间的间隙将电极之间的间隙隔开时,可获得空间周期为{dollar} lambda {dollar}的空间周期性电容式探头对材料结构变化的最佳灵敏度。两个电极越小越好。第二,探针阵列技术可用于根据与探针-泡沫界面平面垂直的位置准确估算泡沫空隙率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号