首页> 外文学位 >3-D finite-difference simulation of elastic wave propagation in borehole, refraction, earthquake and whole earth applications.
【24h】

3-D finite-difference simulation of elastic wave propagation in borehole, refraction, earthquake and whole earth applications.

机译:弹性波在井眼,折射,地震和整个地球应用中的3-D有限差分模拟。

获取原文
获取原文并翻译 | 示例

摘要

Modeling of elastic wave propagation in three dimensional (3-D) geological structures provides insight that is difficult to obtain through one or two dimensional modeling. The finite-difference method on a staggered grid can be useful in investigating the structural effects of media and the spatially distributed source problems in 3-D models. Recent advances in both computing hardware and algorithms make it feasible to apply this method to more general seismological problems. 3-D finite-difference method on the staggered grid has been used to simulate wave propagation in four different applications grouped into three projects whose scales range from a few meters to the whole Earth. Their applications include full waveform borehole sonic logs, refraction data, strong motions near a shear dislocation fault and wave propagation through the whole Earth. All these models contain sharp boundaries across which the Poisson's ratio where staggered grid method provides stable solutions. By using the staggered grid, an optimal high-order scheme can be chosen to use a coarse grid, thus saving computer memory and time. In the borehole modeling study of fullwave sonic logs, even a small three dimensional feature makes the wavefield significantly complicated. Detected wavefield changes significantly depending an the orientation and the coupling of the logging tool clamped to the wall of the hole. Refraction data modeling was used to constrain the shallow part of a larger model used for strong motion studies associated with a shear dislocation source that is spatially distributed on the fault plane. The strong motion modeling reproduced the main observed features in earthquake data. The initial arrival times and amplitudes are determined by the position and orientation of the initial rupture; the shapes of the trailing edges of the pulses are modified by the actual source distribution. Regional velocity distributions determine travel times, but do not significantly alter the amplitude observations. Discontinuities in material properties produce a coda of multiples and converted waves. Lateral variations in velocities change the energy distribution among the trace components as well as contributing to the coda. The whole earth modeling simulated large explosion and double-couple shear sources in 3-D models. Synthetic seismogram results resemble GDSN seismic data. A slight smooth bump in the core-mantle boundary was found to affect a large number of phases. The study reveals that 3-D numerical modelling of whole earth response is a potentially valuable diagnostic and interpretive tool, and a basis for globalization of traveltime tables.
机译:对三维(3-D)地质结构中弹性波传播的建模提供了难以通过一维或二维建模获得的见解。交错网格上的有限差分方法可用于研究3-D模型中介质的结构效应和空间分布源问题。计算硬件和算法方面的最新进展使将这种方法应用于更一般的地震问题变得可行。交错网格上的3-D有限差分法已被用于模拟波在四个不同应用中的传播,这些应用分为三个项目,其规模从几米到整个地球。它们的应用包括全波形钻孔声波测井,折射数据,剪切错位断层附近的强运动以及整个地球的波传播。所有这些模型都包含清晰的边界,在该边界上的泊松比(交错网格方法可提供稳定的解决方案)。通过使用交错网格,可以选择最佳的高阶方案以使用粗网格,从而节省了计算机内存和时间。在全波声波测井仪的井眼建模研究中,即使是很小的三维特征也会使波场变得非常复杂。检测到的波场会显着变化,这取决于测井仪固定在孔壁上的方向和耦合。折射数据建模用于约束较大模型的浅层部分,该较大模型用于与在断层平面上空间分布的剪切错位源相关的强运动研究。强运动建模再现了地震数据中的主要观测特征。初始到达的时间和幅度取决于初始破裂的位置和方向。脉冲后沿的形状通过实际的源分布进行修改。区域速度分布确定行进时间,但不会显着改变振幅观测值。材料特性的不连续性会产生多个波峰和转换后的波。速度的横向变化会改变痕量成分之间的能量分布,并有助于尾气。整个地球模型在3-D模型中模拟了大型爆炸和双耦合剪切源。合成地震图结果类似于GDSN地震数据。发现在芯-幔边界上有一个轻微的平滑隆起会影响大量的相。研究表明,全地球响应的3-D数值建模是潜在的有价值的诊断和解释工具,并且是行程表全球化的基础。

著录项

  • 作者

    Yoon, Kwi-Hyon.;

  • 作者单位

    The University of Texas at Dallas.;

  • 授予单位 The University of Texas at Dallas.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 1995
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号