首页> 外文学位 >Plastic strain analysis of the surface damage in metal cutting.
【24h】

Plastic strain analysis of the surface damage in metal cutting.

机译:金属切削中表面损伤的塑性应变分析。

获取原文
获取原文并翻译 | 示例

摘要

The machining process introduces a substantial amount of plastic deformation into the surface and subsurface of the workpiece and affects the surface integrity. An analytical model was developed through plastic strain analysis to estimate the depth of plastic deformation and the surface shear strain using readily measurable machining parameters and true stress-strain characteristics of the workpiece material.; Experimental validation was carried out with a quick-stop device, workpieces with cemented grids attached, and true stress-strain curve data was carried out on 6061-T6 aluminum alloy and 1020 carbon steel to verify the analytical models developed. A statistical analysis was used to examine the effect of experimental variables on the depth of plastic strain and the surface shear strain.; The depth of cut, rake angle and cutting speed influenced the depth of plastic deformation and the surface plastic flow, but their effect on the surface shear strain was inconclusive. Both the depth of plastic deformation and the surface plastic flow decreased with an increase in rake angle and cutting speed, and with a decrease in depth of cut. Variations in the depth of plastic deformation, the surface plastic strain and the surface plastic flow with experimental variables were explained in terms of the associated variables in the analytical model. Validation of the analytical model showed the average difference between the measured and computed depth of plastic deformation was 13.7% for 1020 carbon steel and 39.1% for 6061-T6 aluminum alloy (due to deviation from plane strain conditions), whereas the average difference in the surface shear strain was 15.3% for 6061-T6 aluminum alloy and 14.7% for 1020 carbon steel.
机译:加工过程将大量塑性变形引入工件的表面和亚表面,并影响表面完整性。通过塑性应变分析建立了一个分析模型,利用易于测量的加工参数和工件材料的真实应力应变特性来估算塑性变形的深度和表面剪切应变。用快速停止装置进行实验验证,在工件上贴上水泥网格,并在6061-T6铝合金和1020碳钢上进行真实的应力-应变曲线数据,以验证所建立的分析模型。统计分析用于检验实验变量对塑性应变深度和表面剪切应变的影响。切削深度,前角和切削速度影响了塑性变形的深度和表面塑性流动,但它们对表面剪切应变的影响尚无定论。塑性变形的深度和表面塑性流动都随着前角和切削速度的增加以及切削深度的降低而降低。根据分析模型中的相关变量,解释了塑性变形深度,表面塑性应变和表面塑性流动随实验变量的变化。分析模型的验证表明,测量到的塑性变形深度与计算得出的塑性变形深度之间的平均差异为1020碳钢为13.7%,而6061-T6铝合金为39.1%(由于与平面应变条件的偏离),而6061-T6铝合金的表面剪切应变为15.3%,1020碳钢的表面剪切应变为14.7%。

著录项

  • 作者

    Chang, Sung-Yong.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Industrial.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 一般工业技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号