首页> 外文学位 >High pressure phase transformation analysis and molecular dynamics simulations of single point diamond turning of germanium.
【24h】

High pressure phase transformation analysis and molecular dynamics simulations of single point diamond turning of germanium.

机译:锗单点金刚石车削的高压相变分析和分子动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

A molecular dynamics (MD) model for single point diamond turning (SPDT) has been developed. Using a nonequilibrium MD simulation of a machining operation the atomistic description of the process is achieved. Germanium was chosen as the primary material of interest due to its brittle-to-ductile transition with decreasing depth of cut. The MD technique was applied to germanium under varying cutting conditions. The original crystalline structure of germanium was found to transform into an apparent amorphous structure during simulated machining. Experimental work confirmed the presence of both an amorphous and a high pressure metallic phase of germanium as being present after and during the machining operation, respectively.; An analysis of the cutting process revealed the existence of sufficient pressure to generate the metallic phase of germanium during machining. The amorphous structure in simulated machining indicates the occurrence of an apparent phase transformation. This supports the assertion that the covalent crystal structure is not stable at the process conditions. The model used does not simulate the metallic form of germanium. Therefore, the model cannot reflect the phase transformation from a covalent phase to a metallic phase.; This work supports previous research in which the depth of cut is the critical parameter in the brittle to ductile transition in machining of germanium, Further, this work establishes pressure as a parameter and the high pressure phase transformation as a necessary mechanism for the transition. The ductile nature of the metallic high pressure phase is believed to provide the machinability of this material.
机译:已经开发了用于单点金刚石车削(SPDT)的分子动力学(MD)模型。使用加工操作的非平衡MD模拟,可以实现过程的原子描述。由于锗的脆性到延性转变以及切削深度的减小,因此选择了锗作为主要材料。 MD技术在变化的切削条件下应用于锗。发现锗的原始晶体结构在模拟加工过程中转变为明显的非晶结构。实验工作证实了在加工操作之后和加工过程中分别存在非晶态和高压金属相。对切​​削过程的分析表明,在加工过程中存在足够的压力来生成锗的金属相。模拟加工中的非晶结构表明出现了明显的相变。这支持了共价晶体结构在工艺条件下不稳定的主张。使用的模型不能模拟锗的金属形式。因此,该模型不能反映出从共价相到金属相的相变。这项工作支持以前的研究,其中切削深度是锗加工中脆性到延性转变的关键参数。此外,这项工作将压力确定为参数,并将高压相变确定为过渡的必要机制。金属高压相的延展性被认为提供了这种材料的可机械加工性。

著录项

  • 作者

    Patten, John Arvle.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号