首页> 外文学位 >High-performance placement and routing for the nanometer scale.
【24h】

High-performance placement and routing for the nanometer scale.

机译:纳米级的高性能放置和布线。

获取原文
获取原文并翻译 | 示例

摘要

Modern semiconductor manufacturing facilitates single-chip electronic systems that only five years ago required ten to twenty chips. Naturally, design complexity has grown within this period. In contrast to this growth, it is becoming common in the industry to limit design team size which places a heavier burden on design automation tools.;Our work identifies new objectives, constraints and concerns in the physical design of systems-on-chip, and develops new computational techniques to address them. In addition to faster and more relevant design optimizations, we demonstrate that traditional design flows based on "separation of concerns" produce unnecessarily suboptimal layouts. We develop new integrated optimizations that streamline traditional chains of loosely-linked design tools. In particular, we bridge the gap between mixed-size placement and routing by updating the objective of global and detail placement to a more accurate estimate of routed wirelength. To this we add sophisticated whitespace allocation, and the combination provides increased routability, faster routing, shorter routed wirelength, and the best via counts of published techniques. To further improve post-routing design metrics, we present new global routing techniques based on Discrete Lagrange Multipliers (DLM) which produce the best routed wirelength results on recent benchmarks. Our work culminates in the integration of our routing techniques within an incremental placement flow to improve detailed routing solutions, shrink die sizes and reduce total chip cost.;Not only do our techniques improve the quality and cost of designs, but also simplify design automation software implementation in many cases. Ultimately, we reduce the time needed for design closure through improved tool fidelity and the use of our incremental techniques for placement and routing.
机译:现代半导体制造促进了单芯片电子系统的发展,仅在五年前,单芯片电子系统就需要10至20个芯片。自然,在此期间,设计复杂性有所增加。与这种增长形成对照的是,限制设计团队的规模在业界变得越来越普遍,这给设计自动化工具带来了沉重负担。我们的工作确定了片上系统物理设计中的新目标,约束和关注点,以及开发新的计算技术来解决这些问题。除了更快,更相关的设计优化之外,我们还证明了基于“关注点分离”的传统设计流程会产生不必要的次优布局。我们开发新的集成优化程序,以简化传统的松散链接设计工具链。特别是,我们通过将全局和局部放置的目标更新为更精确的布线长度估计来弥合混合尺寸放置和布线之间的差距。为此,我们添加了复杂的空格分配,并且该组合提供了更高的可路由性,更快的布线,更短的布线线长以及最佳的已发布技术数量。为了进一步改善布线后的设计指标,我们提出了基于离散拉格朗日乘数(DLM)的新的全局布线技术,该技术可在最新基准测试中产生最佳的布线长度。我们的工作最终是将我们的布线技术集成到一个递增的布局流程中,以改进详细的布线解决方案,缩小管芯尺寸并降低总芯片成本。我们的技术不仅提高了设计的质量和成本,而且简化了设计自动化软件在许多情况下实施。最终,我们通过提高工具保真度并使用我们的增量技术进行布局和布线,减少了完成设计所需的时间。

著录项

  • 作者

    Roy, Jarrod Alexander.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号