首页> 外文学位 >Direct numerical simulation of near-wall turbulence: Passive and active control.
【24h】

Direct numerical simulation of near-wall turbulence: Passive and active control.

机译:近壁湍流的直接数值模拟:被动和主动控制。

获取原文
获取原文并翻译 | 示例

摘要

In this work we analyze high-resolution numerical data bases for a turbulent channel flow with near-wall turbulence control applied at the lower wall. The simulations cover a range of {dollar}Resbtau{dollar}, from 140-200 and are based on parallel spectral element-Fourier discretizations. The control mechanisms that we investigate are both passive and active in nature. Passive control is achieved via surface modification at the lower wall, where streamwise aligned grooves of various sizes are employed. Active control at the lower wall is achieved via applied electric and magnetic fields in fluid of small electrical conductivity, i.e. sea water. These applied fields generate a Lorentz body force near the wall. We have investigated two different electrode and magnet configurations for flow control. The first configuration consists of alternating streamwise electrodes and magnets which produce a Lorentz force in the streamwise direction of the flow. The second active control configuration consists of a distributed array of electro-magnetic control tiles which produced a Lorentz force with non-zero components in all three directions of the flow.; For these flow control simulations, particular attention is paid to the near-wall vorticity dynamics and structures, and the relationship between velocity-vorticity correlations and the Reynolds stresses. Specifically, we find the following: (1) As the Reynolds stress and shear stress increase from riblet valley to riblet tip, the vortex stretching term {dollar}overline{lcub}omegaspprime,omegaspprimesb2{rcub}{dollar} increases substantially as well; (2) Riblets modify the initial development of vortex structures at the wall via increases in normal vorticity at the riblet tips; (3) The application of the streamwise Lozentz force at a wall increases the drag force as well as introduces large secondary motions near the wall; (4) Both static and time-dependent forcing from the electro-magnetic control tiles increases the drag force at the wall due to the introduction of areas of concentrated streamwise vorticity near the tile; (5) Hairpin-like structures are evident in flow visualizations of vortex lines at both controlled and uncontrolled walls; (6) A set of O(100) eigenfunctions constructed using the proper orthogonal decomposition and defined on the full channel domain are not sufficient to accurately reconstruct near-wall turbulence structures of three-dimensional, complex geometry turbulent flows.
机译:在这项工作中,我们分析了湍流通道流动的高分辨率数值数据库,并在下壁应用了近壁湍流控制。该模拟基于范围为140-200的{Resbtau {dollar}(美元)},并且基于并行频谱元素-Fourier离散化。我们研究的控制机制本质上既是被动的又是主动的。被动控制是通过在下壁进行表面改性来实现的,在下壁采用了沿河道排列的各种尺寸的凹槽。下壁的主动控制是通过在电导率小的流体(即海水)中施加电场和磁场来实现的。这些施加的场在壁附近产生洛伦兹体力。我们研究了两种不同的电极和磁体配置用于流量控制。第一种配置由交替的流向电极和磁体组成,它们在流的流向产生洛伦兹力。第二种主动控制配置由电磁控制磁贴的分布式阵列组成,这些电磁控制磁贴在流动的所有三个方向上产生具有非零分量的洛伦兹力。对于这些流动控制模拟,要特别注意近壁涡旋动力学和结构,以及速度-涡旋相关性和雷诺应力之间的关系。具体而言,我们发现:(1)随着雷诺应力和切应力从肋骨谷到肋骨尖端的增加,涡旋拉伸项{dollar} overline {lcub} omegaspprime,omegaspprimesb2 {rcub} {dollar}也显着增加; (2)肋骨通过增加肋骨尖端的正常涡度来改变壁上涡流结构的初始发展; (3)在壁上施加流向Lozentz力会增加阻力,并在壁附近引入较大的二次运动; (4)由于在砖瓦附近引入了集中的沿流涡旋的区域,因此电磁控制砖瓦产生的静力和时间相关的力都增加了壁上的阻力。 (5)发夹状结构在受控壁和非受控壁的涡流流动可视化中均很明显; (6)使用适当的正交分解构造并在全通道域上定义的一组O(100)本征函数不足以准确地重构三维复杂几何湍流的近壁湍流结构。

著录项

  • 作者

    Crawford, Catherine Helen.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 325 p.
  • 总页数 325
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号