首页> 外文学位 >Modelling and simulation of low-tension oceanic cable/body deployment.
【24h】

Modelling and simulation of low-tension oceanic cable/body deployment.

机译:低压海洋电缆/车身部署的建模和仿真。

获取原文
获取原文并翻译 | 示例

摘要

This study presents a general set of three-dimensional dynamic field equations, boundary conditions and a computational algorithm for time simulation of low-tension oceanic cable/body deployment.; The dynamic equations of motion for a cable segment are derived in the principal torsional-flexural axes of a cable cross-section and are based on the classical Euler-Kirchhoff theory of an elastica. Unlike the traditional model for a slender, perfectly flexible cable, the present formulation includes shear flexural, torsional and inertia effects. The addition of the flexural or torsional stiffness, albeit small, provides the necessary mechanism by which energy is transferred across a low-tension region, hence removing the potential singularity when the cable tension vanishes and enhancing stability of the solution. The Euler angles, representing the rotation of the cable segment, are carefully selected to minimize the possibility of coordinates transformation breakdown. The general field equations written in a generic form by index notation also apply to two-dimensional problems and can be reduced to the equations of a perfectly flexible cable.; The kinematic and dynamic boundary conditions are specified. To treat terminal and intermediate boundaries along the cable scope, boundary conditions are developed from the dynamic equilibrium equations for a general ellipsoid using translational and rotational degrees of freedom. To improve the numerical stability when handling larger payout speeds, a special treatment for payout conditions is developed by decoupling the payout velocity from the total velocity. The touchdown boundary conditions are also defined to meet the nonpenetration and nonadhesion conditions imposed at the seafloor.; The dynamic field equations are integrated in time by a stable implicit integration scheme. A stepwise integration process in space and an iterative Newton-Raphson method are adopted to solve the nonlinear boundary-value problem in cable spatial coordinates. A hybrid model and solution algorithm in which bending stiffness is admitted only in the low-tension region is investigated in order to develop a more efficient solution process for cases in which bending is predominantly negligible.; The developed computer code is used to study various applications including a towed cable with a free end, a towed cable/body undergoing complex vessel maneuvers, a cable/multi-body payout and cable/multi-body touchdown problem. The results for the complete elastica model and for the hybrid model are compared with those obtained with a perfectly flexible cable model.
机译:这项研究提出了一套通用的三维动态场方程,边界条件和一种用于低张力海洋电缆/物体展开时间仿真的计算算法。电缆段的动态运动方程是在电缆横截面的主要扭转-弯曲轴上得出的,并且基于弹性体的经典Euler-Kirchhoff理论。与细长的,完全柔性的电缆的传统模型不同,本发明的配方包括剪切挠曲,扭转和惯性效应。挠曲或扭转刚度的增加虽然很小,但却提供了必要的机制,通过该机制,能量可以跨低张力区域传递,从而消除了电缆张力消失时潜在的奇异性,并提高了溶液的稳定性。精心选择代表电缆段旋转的欧拉角,以最大程度地减少坐标变换故障的可能性。用索引符号以通用形式编写的通用磁场方程式也适用于二维问题,并且可以简化为完全柔性电缆的方程式。指定了运动学和动态边界条件。为了处理电缆范围内的终端边界和中间边界,使用平移和旋转自由度从一般椭圆形的动态平衡方程中得出边界条件。为了提高处理较大支付速度时的数值稳定性,通过将支付速度与总速度解耦,开发了一种针对支付条件的特殊处理方法。还定义了触地边界条件,以满足施加在海底的不渗透和不粘附条件。动态场方程通过稳定的隐式积分方案及时积分。采用空间逐步积分法和牛顿-拉夫森迭代法求解电缆空间坐标系中的非线性边值问题。研究了一种混合模型和求解算法,在该模型中,仅在低张力区域才允许弯曲刚度,以便针对主要忽略弯曲的情况开发更有效的求解过程。所开发的计算机代码用于研究各种应用,包括具有自由端的拖曳电缆,经受复杂船只操纵的拖曳电缆/主体,电缆/多主体支出以及电缆/多主体着陆问题。将完整的Elastica模型和混合模型的结果与使用完全柔性电缆模型获得的结果进行比较。

著录项

  • 作者

    Sun, Yang.;

  • 作者单位

    University of Connecticut.;

  • 授予单位 University of Connecticut.;
  • 学科 Applied Mechanics.; Engineering Civil.; Engineering Marine and Ocean.
  • 学位 Ph.D.
  • 年度 1996
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;建筑科学;海洋工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号