首页> 外文学位 >Rolling moment response of a wing-body to stagnation point actuation.
【24h】

Rolling moment response of a wing-body to stagnation point actuation.

机译:机翼机体对停滞点致动的侧倾响应。

获取原文
获取原文并翻译 | 示例

摘要

Vehicles at high angle of attack experience unwanted lateral moments due to asymmetry of the forebody vortices. In order to extend the flight envelope of high performance aircraft, it is necessary to understand and control these moments. This thesis explores the use of a stagnation point actuator (SPA) to achieve desired lateral moments from forebody vortex control. The SPA is a miniature movable nosetip that rotates in the yaw plane. It creates a geometric microasymmetry which biases the growth of the stagnation region boundary layer and hence controls the origin of the forebody vortices.;The control effectiveness of the SPA and the flow mechanisms which create the lateral forces and moments were studied on a delta wing-body of revolution model of aspect ratio 2.0. Flow visualization proved the effectiveness of the SPA in static and dynamic control of forebody vortex asymmetry for angles of attack from 20;Frequency domain analysis shows that the asymmetry in the flowfield is causally and linearly related to stagnation point displacement. The lateral pressure difference is a high fidelity metric of asymmetry, with a time lag substantially higher than that explained by freestream convection. Though complex, the rolling moment response is piece-wise linear within families of angle of attack and bank angle. The system response is successfully simulated by a two-time-scale model, including a time lag and a first order decay, with empirical gains. The free-roll response is adequately modeled by a second-order linear system which succeeds in explaining the observed wing rock. Results indicate that the SPA effectiveness in dynamic roll control is substantially higher than in roll-constrained tests.
机译:由于前体涡旋的不对称性,处于高攻角的车辆会遇到不必要的横向力矩。为了扩大高性能飞机的飞行范围,有必要了解和控制这些时刻。本文探讨了停滞点致动器(SPA)的使用,以通过前体涡流控制获得所需的横向力矩。 SPA是在偏航平面中旋转的微型可移动鼻尖。它会产生几何微不对称性,从而使停滞区边界层的生长产生偏差,从而控制前体旋涡的起源。;在三角翼上研究了SPA的控制有效性以及产生侧向力和力矩的流动机制。宽高比2.0的旋转体模型。流动可视化证明了SPA在前攻涡旋不对称性的静态和动态控制中对20度攻角的有效性;频域分析表明,流场中的不对称性与停滞点位移有因果关系和线性关系。横向压力差是高保真度的不对称度量,其时滞明显高于自由流对流所解释的时滞。尽管很复杂,但在迎角和倾斜角系列中,滚动力矩响应是分段线性的。系统响应已成功通过两个时标模型进行了仿真,包括时滞和一阶衰减,并具有经验增益。自由滚动响应由二阶线性系统适当地建模,该系统成功地解释了观察到的机翼岩石。结果表明,SPA在动态侧倾控制中的有效性大大高于侧倾约束测试中的有效性。

著录项

  • 作者

    Darden, Leigh-Ann.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 356 p.
  • 总页数 356
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号