首页> 外文学位 >Advanced time domain sensing for active structural acoustic control.
【24h】

Advanced time domain sensing for active structural acoustic control.

机译:先进的时域感测,用于主动结构声控制

获取原文
获取原文并翻译 | 示例

摘要

Active control of sound radiation from vibrating structures has been an area of much research ill the past decade. In Active Structural Acoustic Control (ASAC), the minimization of sound radiation is achieved by modifying the response of the structure through structural inputs rather than by exciting the acoustic medium (Active Noise Control, ANC). The ASAC technique often produces global far-field sound attenuation with relatively few actuators as compared to ANC. The structural control inputs of ASAC systems are usually constructed adaptively in the time domain based on a number of error signals to be minimized. One of the primary concerns in active control of sound is then to provide the controller with appropriate "error" information. Entry investigations have implemented far field microphones, thereby providing the controller with actual radiated pressure information. Most structure-borne sound control approaches now tend to eliminate the use of microphones by developing sensors that are integrated in the structure. This study presents a new sensing technique implementing such an approach. A structural acoustic sensor is developed for estimating radiation information from vibrating structures. This technique referred to as Discrete Structural Acoustic Sensing (DSAS) provides time domain estimates of the radiated sound pressure at prescribed locations in the far field over a broad frequency range. The structural acoustic sensor consists of a set of accelerometers mounted on the radiating structure and arrays of digital filters that process the measured acceleration signals in real time. The impulse response of each filter is constructed from the appropriate radiation Green's function for the source area associated with each accelerometer.;Validation of the sensing technique is performed on two different systems: a baffled rectangular plate and a baffled finite cylinder. For both systems, the sensor is first analyzed in terms of prediction accuracy by comparing estimated and actual sound pressure radiated in the far field. The analysis is carried out on a numerical model of the plate and cylinder as well as on the real structures through experimental testing. The sensor is then implemented in a broadband radiation control system. The plate and cylinder are excited by broadband disturbance inputs over a frequency range encompassing several of the first flexural resonances of the structure. Single-sided piezo-electric actuators provide the structural control inputs while the sensor estimates are used as error signals. The controller is based on the filtered-x version of the adaptive LMS algorithm. Results from both analytical and experimental investigations are again presented for the two systems. Additional control results based on error microphones allow a comparison of the two sensing approaches in terms of control performance.;The major outcome of this study is the ability of the structural acoustic sensor to effectively replace error microphones in broadband radiation control systems. In particular, both analytical and experimental results show the level of sound attenuation achieved when implementing Discrete Structural Acoustic Sensing rivaled that achieved with far-field error microphones. Finally, the approach presents a significant alternative over other existing structural sensing techniques as it requires very little system modeling.
机译:在过去的十年中,主动控制振动结构的声音辐射一直是许多研究领域。在主动结构声控制(ASAC)中,通过修改结构通过结构输入的响应而不是通过激励声学介质(主动噪声控制,ANC)来实现声音辐射的最小化。与ANC相比,ASAC技术通常使用相对较少的致动器就能产生全局远场声音衰减。 ASAC系统的结构控制输入通常基于要最小化的许多误差信号在时域中自适应地构造。声音的主动控制的主要关注点之一就是为控制器提供适当的“错误”信息。进入调查已经实现了远场麦克风,从而为控制器提供了实际的辐射压力信息。现在,大多数基于结构的声音控制方法都倾向于通过开发集成在结构中的传感器来消除对麦克风的使用。这项研究提出了一种实现这种方法的新传感技术。开发了一种结构声传感器,用于估计振动结构的辐射信息。这种称为离散结构声学传感(DSAS)的技术可在较宽的频率范围内提供远场中指定位置的辐射声压的时域估计。结构声传感器由安装在辐射结构上的一组加速度计和可实时处理测得的加速度信号的数字滤波器阵列组成。每个滤波器的脉冲响应由与每个加速度计相关的源区域的适当辐射格林函数构造而成。传感技术的验证是在两个不同的系统上进行的:带挡板的矩形板和带挡板的有限圆柱体。对于这两个系统,首先通过比较远场中辐射的估计声压和实际声压,根据预测精度对传感器进行分析。通过实验测试,对板和圆柱的数值模型以及实际结构进行了分析。然后将传感器安装在宽带辐射控制系统中。板和圆柱体在包含该结构的多个第一挠曲共振的频率范围内的宽带扰动输入下被激发。单侧压电执行器提供结构控制输入,而传感器估算值用作误差信号。控制器基于自适应LMS算法的filter-x版本。再次给出了两个系统的分析和实验研究结果。基于误差麦克风的其他控制结果可以比较两种传感方法的控制性能。这项研究的主要成果是结构声学传感器能够有效替代宽带辐射控制系统中的误差麦克风。尤其是,分析结果和实验结果均显示,与离散远场误差麦克风相比,实现离散结构声学传感时所达到的声音衰减水平。最后,由于该方法只需要很少的系统建模,因此它是其他现有结构传感技术的重要替代方案。

著录项

  • 作者

    Maillard, Julien.;

  • 作者单位

    Virginia Polytechnic Institute and State University.;

  • 授予单位 Virginia Polytechnic Institute and State University.;
  • 学科 Mechanical engineering.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 400 p.
  • 总页数 400
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号