首页> 外文学位 >Seismic design and retrofit of cylindrical liquid storage tanks.
【24h】

Seismic design and retrofit of cylindrical liquid storage tanks.

机译:圆柱形液体储罐的抗震设计和改造。

获取原文
获取原文并翻译 | 示例

摘要

Observed damage to cylindrical liquid storage tanks in past earthquakes and the presence of a large number of such tanks in regions of high seismic risk are two of the main reasons necessitating the need to retrofit these tanks. Past seismic damage to tanks included the buckling of the shell wall, pull out and/or damage to the base anchor bolts, and damage to the tank roof. This research addresses the cause of these damages and recommends retrofit schemes to prevent similar damage in future earthquakes.;Buckling in cylindrical storage tanks often occurs in one of two main modes: "elephant" foot buckling or diamond buckling. Various analytical approaches to compute the buckling capacity of shells are discussed and compared to a quasi-static non-linear finite element approach. A wide range of dimensions of anchored tanks are used in such a comparison with the available analytical approaches. Further, example of an unanchored tank is also presented where a general contact approach with a rigid foundation is used. Circumferential ring stiffeners as well as vertical stiffeners are discussed as possible retrofit schemes to increase the buckling capacity of cylindrical tanks. Dramatic improvement of the buckling capacity can be achieved by the use of ring stiffeners in the bottom third of the tank shell wall. Appropriate spacing of such ring stiffeners is illustrated. Partial vertical stiffeners have been shown to cause local buckling and tearing of the shell wall if not used in conjection with ring stiffeners.;A more detailed approach for the computation of the overturning moment and base shear capacity of a cylindrical storage tank, including the effects of the anchors, is presented. This approach also provides a path to designing anchors. Appropriate design of the anchors and the anchor chairs is discussed. Retrofit of unanchored tanks against the base motion is also addressed. Two possibilities are examined, either anchoring the tank or providing preuplifting. Finite element studies are presented for these possible solutions. Both methods show promise in reducing the excessive uplift seen in unanchored tanks during large seismic events.;Finally, the impact of the sloshing liquid on the roof and its connection with the tank shell is examined. Simplified approaches are presented to calculate the impact hydrodynamic pressures exerted on the roof for design of the roof and its connection. Suggested retrofit schemes are cylindrical perforated baffles or annular baffles. Both reduce sloshing, and thus, minimize the impact pressure of the sloshing liquid on the roof.
机译:在过去的地震中观察到的圆柱形液体储罐的损坏以及在地震危险高的地区存在大量此类储罐是需要改装这些储罐的两个主要原因。过去对储罐的地震破坏包括壳体壁的屈曲,拉出和/或损坏基础地脚螺栓以及破坏储罐顶盖。这项研究解决了造成这些损坏的原因,并提出了改进方案,以防止在未来的地震中发生类似的损坏。圆柱形储罐中的屈曲通常以两种主要模式之一发生:“大象”脚屈曲或金刚石屈曲。讨论了各种计算壳体屈曲能力的分析方法,并将其与准静态非线性有限元方法进行了比较。与现有的分析方法进行比较时,使用了各种尺寸的锚固储罐。此外,还提供了无锚定水箱的示例,其中使用了具有刚性基础的一般接触方法。讨论了周向环形加劲肋和垂直加劲肋,作为可能的改进方案,以增加圆柱罐的屈曲能力。通过在罐壳壁的底部三分之一处使用环形加劲肋,可以显着提高屈曲能力。示出了这种环形加强件的适当间隔。已显示,如果不与环形加强筋一起使用,则部分垂直加强筋会引起壳体壁的局部屈曲和撕裂。计算圆柱储罐的倾覆力矩和基础剪力的更详细方法,包括各种影响介绍了锚点。此方法还提供了设计锚点的途径。讨论了锚和锚椅的适当设计。还讨论了针对基础运动的无锚坦克的改装。研究了两种可能性,即锚定油箱或提供预举。针对这些可能的解决方案提出了有限元研究。两种方法都有望在大型地震事件中减少未锚定储罐中出现的过度隆起。最后,检查了晃动液体对顶板及其与储罐壳的连接的影响。提出了简化的方法来计算施加在屋顶上的冲击水动力压力,以设计屋顶及其连接。建议的改造方案是圆柱形穿孔挡板或环形挡板。两者都减少晃动,因此使晃动液体在屋顶上的冲击压力最小。

著录项

  • 作者

    Bhatia, Hussain.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号