首页> 外文学位 >Hydrophilic surface modification of polymer vascular prostheses and metal endoluminal stents.
【24h】

Hydrophilic surface modification of polymer vascular prostheses and metal endoluminal stents.

机译:聚合物人工血管和金属腔内支架的亲水表面改性。

获取原文
获取原文并翻译 | 示例

摘要

Large diameter vascular replacements of GORE-TEX{dollar}spcircler{dollar} or Dacron{dollar}spcircler{dollar} are frequently used to replace damaged arteries. Poor long term patency of small diameter grafts, 6 millimeters or less, is attributed to platelet adhesion and the inability to regenerate a blood contacting surface of vascular endothelium. Metal endoluminal stents are vascular prostheses used to keep arterial lumens open following angioplasty. Complications for these implants include short term thrombogenicity and long term restenosis.; This study was directed to the synthesis and characterization of more biocompatible surfaces for these devices. Gamma radiation induced-graft polymerization and radio frequency plasma activation was investigated to surface modify polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), expanded polytetrafluoroethylene (ePTFE), and 316 stainless steel. To mimic natural biocompatible tissue surfacesl a series of hydrophilic polymers were grafted onto PMMA, PET, and ePTFE. Hydrophilic graft polymers were derived from N-vinyl pyrrolidone (NVP), potassium sulfopropylacrylate (KSPA), and dimethylacrylamide, and were grafted copolymerized with several bioactive compounds in a two step modification process. Complex graft surfaces containing fibronectin (Fn), laminin (Lm), type IV collagen (IV), heparin sulfate (Hp), albumin (Alb), and a synthetic fibronectin like protein polymer (RGD) were prepared.; For surface modification of endoluminal stents of 316 stainless and tantalum, a combination of RF plasma activation combined with gamma radiation induced grafting was studied. Plasma deposition of hydrophobic poly(hexane) primer layers with water plasma oxidation were examined for initial metal surface activation.; Surfaces were characterized by gravimetric analysis, contact angle goniometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Auger depth proGling, optical microscopy (OM), and low voltage scanning electron microscopy (SEM). Blood compatibility was evaluated by in-vitro, ex-vivo, and in-vivo radiolabelled platelet and endoluminal cell adhesion assays.; Surfaces of gamma grafted PVP provided a nonadherent surface to endothelial cells and platelets. The incorporation of albumin and RGD protein polymer in the graft polymer increased in-vitro endothelial cell adhesion to PVP surfaces.; The design and construction of instrumentation to characterize the adhesion between tissue surfaces and biomaterials was also accomplished (Chapter 7). Key design features include the ability to characterize the adhesion force under a variety of load and environmental conditions. The importance of this novel instrumentation to tissue-biomaterials interactions of ocular and vascular tissues is discussed.
机译:经常使用大直径血管替代物GORE-TEX {dollar} spcircler {dollar}或Dacron {dollar} spcircler {dollar}来替代受损的动脉。小直径移植物(6毫米或更小)的长期通畅性差归因于血小板粘附和无法再生血管内皮的血液接触表面。金属腔内支架是血管假体,用于在血管成形术后保持动脉腔开放。这些植入物的并发症包括短期血栓形成和长期再狭窄。这项研究针对这些设备的更多生物相容性表面的合成和表征。研究了伽马辐射诱导的接枝聚合和射频等离子体活化,以对聚甲基丙烯酸甲酯(PMMA),聚对苯二甲酸乙二醇酯(PET),膨体聚四氟乙烯(ePTFE)和316不锈钢进行表面改性。为了模拟天然的生物相容性组织表面,将一系列亲水性聚合物接枝到PMMA,PET和ePTFE上。亲水性接枝聚合物衍生自N-乙烯基吡咯烷酮(NVP),磺丙基丙烯酸钾(KSPA)和二甲基丙烯酰胺,并在两步修饰过程中与几种生物活性化合物接枝共聚。制备了包含纤连蛋白(Fn),层粘连蛋白(Lm),IV型胶原蛋白(IV),硫酸肝素(Hp),白蛋白(Alb)和合成的纤连蛋白样蛋白聚合物(RGD)的复杂移植物表面。为了对316不锈钢和钽的腔内支架进行表面改性,研究了RF等离子体活化与γ射线诱导的嫁接的组合。用水等离子体氧化对疏水性聚(己烷)底漆层进行等离子体沉积,以检查其初始金属表面活化。通过重量分析,接触角测角法,傅里叶变换红外光谱(FTIR),X射线光电子能谱(XPS),俄歇深度分析,光学显微镜(OM)和低压扫描电子显微镜(SEM)对表面进行了表征。通过体外,离体和体内放射性标记的血小板和腔内细胞粘附试验评估血液相容性。 γ接枝的PVP表面为内皮细胞和血小板提供了非粘附性表面。白蛋白和RGD蛋白聚合物在接枝聚合物中的掺入增加了体外内皮细胞对PVP表面的粘附。还完成了用于表征组织表面和生物材料之间粘附的仪器的设计和构造(第7章)。关键的设计功能包括在各种负载和环境条件下表征粘附力的能力。讨论了这种新型仪器对眼和血管组织的组织-生物材料相互作用的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号