首页> 外文学位 >Dynamics of geometrically nonlinear sliding beams.
【24h】

Dynamics of geometrically nonlinear sliding beams.

机译:几何非线性滑动梁的动力学。

获取原文
获取原文并翻译 | 示例

摘要

The elasto-dynamics of flexible frame structures is of interest in many areas of engineering. In certain structural systems the deflections can be large enough to warrant a nonlinear analysis. For example, offshore structures, long suspension bridges and other relatively slender structures used in space applications require a geometrically nonlinear analysis. In addition, if the structure has deployable elements, as in some space structures, the required analysis becomes even more complex. Typical examples are spacecraft antennae, radio telescopes, solar panels and space-based manipulators with deployable elements.;The main objective of the present work is to formulate the problem of sliding beams undergoing large rotations and small strains. Further we aim to develop efficient finite element technique for analysis of such complex systems. Finally we wish to examine the nature of the motion of sliding beams and point out its salient features.;We start with two well known approaches in the nonlinear finite element static analysis of highly flexible structures, namely, the updated Lagrangian and the consistent co-rotational methods and extend these techniques to dynamic analysis of geometrically nonlinear beam structures. We analyse several examples by the same methods and compare the performance of each for efficiency and accuracy.;Next, using McIver's extension of Hamilton's principle, we formulate the problem of geometrically flexible sliding beams by two different approaches. In the first the beam slides through a fixed rigid channel with a prescribed sliding motion. In this formulation which we refer to as the sliding beam formulation, the material points on the beam slide relative to a fixed channel. In the second formulation the material points on the fixed beam are observed by a moving observer on a sliding channel and the beam is axially at rest. The governing equations of motion for the two formulations describe the same physical problem and by mapping both to a fixed domain, using proper transformations, we show that the two sets of governing equations become identical.;It is not, possible to find analytical solutions to our problem and we choose the Galerkin numerical method to obtain the transient response of the problem for the special case axially rigid beam. Next we follow a more elegant approach wherein we use the developed incremental nonlinear finite element approaches (the updated Lagrangian and the consistent co-rotational method) in conjunction with a variable time domain beam finite elements (where the number of elements is fixed and as mass enters the domain of interest, but the sizes of elements change in a prescribed manner in the undeformed configuration).;To verify the formulation and its computational implementation we analyse many examples and compare our findings with those reported in the literature when possible. We also use these illustrative examples to identify the importance of various terms such as axial flexibility and foreshortening effects. Finally we look into the problem of parametric resonance for the beam with periodically varying length and we show that the regions of stability obtained in the literature, using a linear analysis, do not hold when a more realistic nonlinear analysis is undertaken.
机译:挠性框架结构的弹性动力学在许多工程领域中都令人关注。在某些结构系统中,挠度可能足够大以保证进行非线性分析。例如,在太空应用中使用的海上结构,长悬索桥和其他相对细长的结构需要进行几何非线性分析。另外,如果结构具有可部署元素,如某些空间结构中那样,则所需的分析将变得更加复杂。典型的例子是航天器天线,射电望远镜,太阳能电池板和带有可展开元件的天基操纵器。本工作的主要目的是阐明滑动梁承受大旋转和小应变的问题。此外,我们旨在开发有效的有限元技术来分析此类复杂系统。最后,我们希望检查滑动梁运动的性质并指出其显着特征。我们从两种非常著名的方法开始,对高柔性结构进行非线性有限元静态分析,即更新拉格朗日方法和一致协方差法。旋转方法并将这些技术扩展到几何非线性梁结构的动态分析。我们用相同的方法分析了几个例子,并比较了每个例子的效率和准确性。接下来,使用汉密尔顿原理的McIver扩展,通过两种不同的方法来公式化几何柔性滑动梁的问题。首先,梁以规定的滑动运动穿过固定的刚性通道。在我们称为滑动梁公式的此公式中,梁上的材料点相对于固定通道滑动。在第二种形式中,固定梁上的物质点由滑动通道上的移动观察器观察,并且梁轴向静止。这两个公式的运动控制方程描述了相同的物理问题,并且通过将它们映射到固定域并使用适当的变换,我们表明两组控制方程变得相同。我们的问题,我们选择Galerkin数值方法来获得特殊情况下轴向刚性梁问题的瞬态响应。接下来,我们采用一种更为优雅的方法,其中,我们将开发的增量非线性有限元方法(更新的拉格朗日方法和一致的同向旋转方法)与可变时域梁有限元(其中元素的数量固定且质量相同)结合使用进入感兴趣的域,但是元素的大小在未变形的配置中以指定的方式更改。);为验证公式及其计算实现,我们分析了许多示例,并在可能的情况下将我们的发现与文献中的发现进行了比较。我们还使用这些说明性示例来确定各种术语(例如轴向柔韧性和缩短效果)的重要性。最后,我们研究了周期性变化长度的梁的参数共振问题,结果表明,使用线性分析方法在文献中获得的稳定性区域在进行更实际的非线性分析时不成立。

著录项

  • 作者

    Behdinan, Kamran.;

  • 作者单位

    University of Victoria (Canada).;

  • 授予单位 University of Victoria (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 272 p.
  • 总页数 272
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号