首页> 外文学位 >CFD simulation and verification of flow in mixing tanks.
【24h】

CFD simulation and verification of flow in mixing tanks.

机译:CFD模拟和混合罐中流动的验证。

获取原文
获取原文并翻译 | 示例

摘要

A novel approach was developed to simulate the velocity distribution in a mixing tank. Inlet boundary conditions were attributed to the moving impellers. Calculations were performed using FLUENT V 4.31 running on a HP-UNIX network platform. In the case of Rushton turbine impeller, the predicted velocity distribution in the turbulent flow regime was in favorable agreement with the reported laser doppler anemometer (LDA) data. In the case of pitched-blade impeller, the simulated three-directional velocity components in the laminar flow regime showed quantitative agreement with the reported LDA data.;Based on the angular momentum balance, the required torque in mixing tanks was calculated after the converged solution was obtained. The simulated power number in the turbulent regime was 5.6 for Rushton turbine impeller and 1.7 for pitched-blade impeller.;Three approaches to simulate mixing tanks were comparatively investigated with a Rushton turbine impeller in turbulent flow regime. Inlet boundary approach presented expected flow pattern with significant saving in computing effort. Sliding mesh approach showed more accurate and consistent agreement in velocity distribution with the limitation of incompatibility with RSM turbulence model.;The standard k-;The IDEAS software package was used to create an unstructured mesh for a mixing tank with a Rushton turbine impeller. The unstructured mesh was imported and modified in the FLUENT unstructured mesh module. The calculated data in unstructured mesh domain about velocity distribution and energy dissipation rate were in favorable agreement with the counterpart predicted in structured mesh domain. It was demonstrated that an unstructured mesh, created automatically and refined locally, could handle complicated geometry.
机译:开发了一种新颖的方法来模拟混合罐中的速度分布。入口边界条件归因于移动的叶轮。使用在HP-UNIX网络平台上运行的FLUENT V 4.31进行了计算。对于Rushton涡轮机叶轮,在湍流状态下的预测速度分布与所报道的激光多普勒风速计(LDA)数据具有良好的一致性。对于斜桨叶轮,在层流状态下模拟的三向速度分量与所报告的LDA数据显示出定量的一致性。;基于角动量平衡,在收敛解之后计算混合罐中所需的扭矩获得了。 Rushton涡轮叶轮在湍流状态下的模拟功率数为5.6,斜桨叶轮为1.7 。;在Rushton涡轮叶轮在湍流状态下,比较研究了三种模拟混合槽的方法。入口边界方法提供了预期的流模式,大大节省了计算量。滑动网格方法在速度分布上显示出更准确和一致的一致性,但与RSM湍流模型不兼容。它使用标准k-; IDEAS软件包为带有Rushton涡轮叶轮的混合罐创建非结构化网格。非结构化网格已在FLUENT非结构化网格模块中导入和修改。在非结构化网格域中关于速度分布和能量耗散率的计算数据与在结构化网格域中预测的数据相吻合。结果表明,自动创建并在本地精炼的非结构化网格可以处理复杂的几何图形。

著录项

  • 作者

    Huang, Fengliang.;

  • 作者单位

    University of Louisville.;

  • 授予单位 University of Louisville.;
  • 学科 Engineering Chemical.;Engineering Mechanical.;Computer Science.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 228 p.
  • 总页数 228
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号