首页> 外文学位 >Exploration of high temperature ethanol/water mobile phases as a green alternative to traditional reversed phase high performance liquid chromatography.
【24h】

Exploration of high temperature ethanol/water mobile phases as a green alternative to traditional reversed phase high performance liquid chromatography.

机译:探索高温乙醇/水流动相,作为传统反相高效液相色谱的绿色替代品。

获取原文
获取原文并翻译 | 示例

摘要

Reversed phase liquid chromatography is a common analytical technique employed in a variety of fields as a core component in many developmental and validation methods. Traditionally, this technique uses acetonitrile/water or methanol/water mixtures as the mobile phase to elute analytes of interest via differential partitioning to and from an embedded stationary phase. These organic modifiers, however, are generally toxic and flammable. This toxicity and volatility necessitates additional care in use and disposal compared to greener solvents.;In particular, the more commonly employed acetonitrile is moderately toxic and produces significantly more toxic substances upon decomposition (nominally carbon monoxide and hydrogen cyanide), which further complicates its disposal. In addition, while methanol is less toxic, this modifier is more volatile and requires significantly greater concentrations for similar eluotrophic strength. Ethanol, on the other hand, provides a greener alternative due to its low toxicity to both humans and the environment. Furthermore, the eluotrophic strength of ethanol is comparable to the acetonitrile modifier, thus requiring smaller organic concentrations than methanol. Ethanol's boiling point is also significantly greater than methanol's boiling point, thereby reducing the flammability risk versus methanol. Finally, moderate increases in temperature are found to significantly reduce the several times greater viscosity of ethanol/water mixtures versus traditional mobile phases. The application of higher temperatures also provides a secondary benefit by increasing the elution strength of the mobile phase, thereby reducing run times and, more importantly, 'organic waste'.;In this work, high temperature ethanol/water mixtures were explored in-depth as a green alternative to traditional hydro-organic mobile phases. Solvent strength comparisons revealed that high temperature ethanol/water mixtures have a broad range of eluting power that exceeds 60% ambient acetonitrile/water mobile phases without requiring greater than 50% ethanol content. In addition, retention was demonstratively less sensitive to changes in temperature than to changes in organic content. From an examination of the effect of these changes on the retention mechanism by linear solvation energy relationships, it was determined that temperature altered retention more by affecting the relative difference in the hydrogen-bond acidity while ethanol content largely changed retention by modifying mobile phase cavity formation effects.;From a van't Hoff analysis of the thermodynamics of transfer for a methylene substituent, the structures of the mobile phase was revealed to differ considerably. In particular, it was determined that the greater elution strength of the ethanol modifier is a result of a reduction in the favorable change in entropy by transfer of the analyte out of the mobile phase. This observation implied that a mobile phase cavity around a non-polar analyte is more stable when employing ethanol as the modifier.;Finally, high temperature ethanol/water mobile phases were examined in the chromatographic approximation of pure water retention (log k' w) and subsequent estimation of the octanol/water partition coefficient (log P) via the Collander equation. Linear solvation energy relationships were employed to compare the log k'w extrapolated systems based on high temperature ethanol/water, ambient acetonitrile/water, and ambient methanol/water mobile phases. Based on the comparisons of the three organic modifiers, high temperature ethanol/water mobile phases were observed to provide the best estimation of log P. This conclusion is based on a high Collander correlation of 0.978 and a near unity cos theta value of 0.998 between the LSER coefficient vectors of ethanol/water log k'w and octanol/water log P systems.
机译:反相液相色谱法是许多领域中常用的分析技术,是许多开发和验证方法中的核心组件。传统上,该技术使用乙腈/水或甲醇/水的混合物作为流动相,通过与分配的固定相之间的差异分配来洗脱目标分析物。然而,这些有机改性剂通常是有毒和易燃的。与绿色溶剂相比,这种毒性和挥发性需要在使用和处置时加倍小心。;特别是,更常用的乙腈具有中等毒性,并且在分解时会产生明显更多的有毒物质(名义上为一氧化碳和氰化氢),这使其处置更加复杂。此外,尽管甲醇的毒性较小,但该改性剂的挥发性更大,并且对于类似的电腐蚀强度,需要明显更高的浓度。另一方面,由于乙醇对人类和环境的毒性低,因此它提供了更绿色的替代品。此外,乙醇的耐电强度与乙腈改性剂相当,因此所需的有机物浓度要比甲醇小。乙醇的沸点也明显高于甲醇的沸点,因此与甲醇相比,降低了可燃性风险。最后,发现温度的适度升高会大大降低乙醇/水混合物的粘度,是传统流动相的几倍。通过提高流动相的洗脱强度,从而减少运行时间,更重要的是减少“有机废物”,更高温度的应用也带来了第二个好处。在这项工作中,对高温乙醇/水混合物进行了深入研究作为传统有机水相的绿色替代品。溶剂强度的比较显示,高温乙醇/水混合物的洗脱能力范围很广,超过了60%的环境乙腈/水流动相,而乙醇含量却不超过50%。此外,相对于有机物含量的变化,保留率对温度变化的敏感性较低。通过线性溶剂化能量关系研究这些变化对保留机理的影响,可以确定温度通过影响氢键酸度的相对差异而更多地改变了保留,而乙醇含量通过改变流动相腔的形成大大改变了保留通过对亚甲基取代基转移的热力学的范霍夫分析,发现流动相的结构有很大不同。特别地,已确定乙醇改性剂的较高洗脱强度是由于分析物从流动相转移出而导致的熵的有利变化降低的结果。该观察结果表明,当使用乙醇作为改性剂时,非极性分析物周围的流动相腔更稳定。最后,在纯水保留量的色谱近似中检查了高温乙醇/水流动相(log k'w)然后通过Collander方程估算辛醇/水分配系数(log P)。线性溶剂化能量关系用于比较基于高温乙醇/水,环境乙腈/水和环境甲醇/水流动相的log k'w外推系统。基于三种有机改性剂的比较,观察到高温乙醇/水流动相可提供log P的最佳估计。此结论基于0.978的高Collander相关性和介于0.998和0.998之间的接近1的cosθ值。乙醇/水log k'w和辛醇/水log P系统的LSER系数向量。

著录项

  • 作者

    Ogden, Phillip Bradford.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Analytical chemistry.;Pharmaceutical sciences.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号