首页> 外文学位 >Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization.
【24h】

Anisotropic piezoelectric twist actuation of helicopter rotor blades: Aeroelastic analysis and design optimization.

机译:直升机旋翼桨叶的各向异性压电扭转致动:气动弹性分析和设计优化。

获取原文
获取原文并翻译 | 示例

摘要

An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain a soluti An aeroelastic model suitable for control law and preliminary structural design of composite helicopter rotor blades incorporating embedded anisotropic piezoelectric actuator laminae is developed. The aeroelasticity model consists of a linear, nonuniform beam representation of the blade structure, including linear piezoelectric actuation terms, coupled with a nonlinear, finite-state unsteady aerodynamics model. A Galerkin procedure and numerical integration in the time domain are used to obtain amited additional piezoelectric material mass, it is shown that blade twist actuation approaches which exploit in-plane piezoelectric free-stain anisotropies are capable of producing amplitudes of oscillatory blade twisting sufficient for rotor vibration reduction applications.;The second study examines the effectiveness of using embedded piezoelectric actuator laminae to alleviate vibratory loads due to retreating blade stall. A 10 to 15 percent improvement in dynamic stall limited forward flight speed, and a 5 percent improvement in stall limited rotor thrust were numerically demonstrated for the active twist rotor blade relative to a conventional blade design. The active twist blades are also demonstrated to be more susceptible than the conventional blades to dynamic stall induced vibratory loads when not operating with twist actuation. This is the result of designing the active twist blades with low torsional stiffness in order to maximize piezoelectric twist authority.;Determining the optimum tradeoff between blade torsional stiffness and piezoelectric twist actuation authority is the subject of the third study. For this investigation, a linearized hovering-flight eigenvalue analysis is developed. Linear optimal control theory is then utilized to develop an optimum active twist blade design in terms of reducing structural energy and control effort cost. The forward flight vibratory loads characteristics of the torsional stiffness optimized active twist blade are then examined using the nonlinear, forward flight aeroelastic analysis. The optimized active twist rotor blade is shown to have improved passive and active vibratory loads characteristics relative to the baseline active twist blades.
机译:建立了一种适用于控制律的气动弹性模型,并结合了嵌入式各向异性压电致动器叶片,对复合材料直升机旋翼桨叶进行了初步的结构设计。空气弹性模型由叶片结构的线性非均匀梁表示(包括线性压电致动项)以及非线性有限状态非稳态空气动力学模型组成。利用时域的Galerkin程序和数值积分获得了求解结果。建立了适用于控制律的气动弹性模型,并结合了嵌入式各向异性压电致动器叶片,对复合材料直升机旋翼桨叶进行了初步的结构设计。空气弹性模型由叶片结构的线性非均匀梁表示(包括线性压电致动项)以及非线性有限状态非稳态空气动力学模型组成。使用Galerkin程序和时域中的数值积分来获得允许的附加压电材料质量,结果表明利用平面内压电自由染色各向异性的叶片扭转致动方法能够产生足以使转子产生振动的叶片扭转振幅第二项研究检验了使用嵌入式压电致动器薄片减轻由于后退叶片失速而引起的振动载荷的有效性。相对于常规叶片设计,在数值上证明了主动扭转转子叶片的动态失速限制前进飞行速度提高了10%至15%,失速限制的转子推力提高了5%。还证明了,当不通过扭转致动操作时,主动扭转叶片比常规叶片更容易受到动态失速引起的振动载荷的影响。这是设计具有低扭转刚度的主动扭转叶片以使压电扭转权威最大化的结果。确定第三叶片研究的主题是确定叶片扭转刚度与压电扭转致动权威之间的最佳权衡。为了进行这项研究,开发了线性化的悬停飞行特征值分析。然后,在减少结构能耗和控制成本方面,利用线性最优控制理论来开发最优的主动旋翼桨叶设计。然后使用非线性,前向飞行气动弹性分析检查扭转刚度优化的主动扭力叶片的前向飞行振动载荷特性。相对于基线主动扭转叶片,优化的主动扭转转子叶片显示出具有改善的被动和主动振动载荷特性。

著录项

  • 作者

    Wilkie, William Keats.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 航空、航天技术的研究与探索;
  • 关键词

  • 入库时间 2022-08-17 11:48:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号