首页> 外文学位 >Mechanistic-assisted design of catalysts for nitric oxide emission control.
【24h】

Mechanistic-assisted design of catalysts for nitric oxide emission control.

机译:机械辅助设计的一氧化氮排放控制催化剂。

获取原文
获取原文并翻译 | 示例

摘要

Nitric oxide (NO) is one of the major air pollutants. The U.S. Environmental Protection Agency (EPA) has implemented stringent rules and regulations to control its emission. Catalytic removal of NO has been considered to be the most cost effective and feasible approach. This dissertation focuses on mechanistic study and catalyst design of two NO removal reactions: direct NO decomposition on Tb-Pt/{dollar}rm Alsb2Osb3{dollar} and NO reduction with CO on supported Rh catalysts.; Mechanistic information is essential in designing an effective catalyst for NO-CO reaction and NO decomposition. Results of the previous and present studies have established that NO adsorbs on reduce rhodium sites {dollar}rm (Rhsp{lcub}o{rcub}){dollar} as anionic NO (Rh-{dollar}rm NOsp-rbrack {dollar} and on oxidized rhodium sites {dollar}rm (Rhsp+){dollar} as cationic NO (Rh-{dollar}rm NOsp+rbrack .{dollar} The former is the active adsorbate which dissociates to form adsorbed oxygen and adsorbed nitrogen; the latter is a spectator. Since reduced Rh sites have been found to be more active than oxidized Rh sites for NO-CO reaction, suppression of the transformation of {dollar}rm Rhsp{lcub}o{rcub}{dollar} sites to less active {dollar}rm Rhsp+{dollar} sites should allow maintenance of high catalyst activity.; One approach to prohibit the transformation of {dollar}rm Rhsp{lcub}o{rcub}{dollar} to {dollar}rm Rhsp+{dollar} is the silanation of {dollar}rm Rh/SiOsb2{dollar} with trimethylchorosilane. The silanation approach was tested in this study under NO-CO environment. Results of this study show that silanation fails to prevent the formation of {dollar}rm Rhsp+{dollar} in NO-CO environment. Adsorbed oxygen resulted from NO dissociation oxidizes {dollar}rm Rhsp{lcub}o{rcub}{dollar} to {dollar}rm Rhsp+.{dollar}; Promoting the dissociation of adsorbed NO species may also increase the activity of the catalyst for NO-CO reaction. MnO has been known to act as an oxophilic promoter which promotes CO dissociation. Since NO and CO have similar molecular orbitals with an exception of the lone electron for NO, MnO may also promote NO dissociation. Infrared temperature-programmed reaction studies over Mn-{dollar}rm Rh/SiOsb2{dollar} reveal that MnO does not show any promotion effect on adsorbed NO dissociation. Thus, the interaction of MnO with CO cannot be extended to the interaction of MnO with NO.; Extensive literature search concludes that the low NO decomposition activity of a catalyst is due to its inability to desorb oxygen from NO dissociation sites, suggesting that promoting oxygen desorption may increase NO conversion. We have identified terbium oxide as a promoter which possesses the ability to desorb oxygen at low temperatures. Results of the study of NO decomposition on Tb-promoted {dollar}rm Pt/Alsb2Osb3{dollar} catalysts shows that Tb oxide promotes desorption of oxygen from dissociated NO at 593 K which is significantly lower than the reported oxygen desorption temperatures for Pt catalysts. Desorbed oxygen is produced from decomposition of chelating bidentate nitrato which may be resulted from the reaction of adsorbed oxygen on Pt and adsorbed NO on Tb oxide. Promotion of oxygen desorption is an effective approach for enhancement of NO decomposition activity. This study points out a new direction for the development of NO decomposition catalysts. The potential of the Tb-{dollar}rm Pt/Alsb2Osb3{dollar} catalyst for the practical application has to further be determined under the effect of air, {dollar}rm Hsb2O,{dollar} and {dollar}rm SOsb2{dollar} under the steady-state flow condition.; This study demonstrates that fundamental understanding of the mechanism of the reaction is essential for designing and developing effective catalysts for NO decomposition and NO reduction with CO.
机译:一氧化氮(NO)是主要的空气污染物之一。美国环境保护署(EPA)实施了严格的法规来控制其排放。催化去除NO被认为是最经济有效和可行的方法。本文主要研究了两种脱硝反应的机理研究和催化剂设计:Tb-Pt / rm Alsb2Osb3 {dollar}上直接NO分解和负载型Rh催化剂上CO还原NO的反应。机械信息对于设计用于NO-CO反应和NO分解的有效催化剂至关重要。先前和当前研究的结果已经确定,NO以阴离子NO的形式吸附在还原铑位点上(rhsp {lcub} o {rcub}){dol},并以阴离子型NO(Rh- {dol} rm NOsp-rbrack {dol}和在氧化铑位点{dol}} rm(Rhsp +){dollar}上为阳离子NO(Rh- {dollar} rm NOsp + rbrack。{dollar}。前者是活性吸附物,它分解形成吸附的氧和氮,后者是由于发现减少的Rh位点比NO-CO反应的氧化Rh位点更有活性,因此抑制了{rm} rm Rhsp {lcub} o {rcub} {dollar}位向活性较低的{dollar}的转化。 } rm Rhsp + {dollar}位点应保持较高的催化剂活性。硅烷化是阻止{rm} rm Rhsp {lcub} o {rcub} {dollar}转换为{dol} rm Rhsp + {dollar}的一种方法。用三甲基氯硅烷制备{rm} Rh / SiOsb2 {USD},在NO-CO环境下测试了硅烷化方法,研究结果表明:硅烷化不能防止在NO-CO环境中形成{rm} rm Rhsp + {dol}。一氧化氮分解引起的吸附氧将{rhrmrm Rhsp {lcub} o {rcub} {dollar}氧化为{rmalrm Rhsp +。{dollar};促进吸附的NO物种的离解也可以增加催化剂的NO-CO反应活性。已知MnO起促进CO离解的亲氧性促进剂的作用。由于NO和CO除NO的孤电子外具有相似的分子轨道,因此MnO还可促进NO的离解。在Mn- {rmal} rm Rh / SiOsb2 {dollar}上进行的红外程序升温反应研究表明,MnO对吸附的NO离解没有任何促进作用。因此,MnO与CO的相互作用不能扩展到MnO与NO。的相互作用。广泛的文献搜索得出结论,催化剂的低NO分解活性是由于其无法从NO离解位点解吸氧,这表明促进氧解吸可能会提高NO转化率。我们已经鉴定出氧化as为促进剂,其具有在低温下解吸氧气的能力。对Tb促进的{rm} Pt / Alsb2Osb3 {dol}催化剂进行NO分解的研究结果表明,Tb氧化物在593 K时促进了离解NO的氧气解吸,这明显低于Pt催化剂报道的氧气解吸温度。螯合的二齿硝酸盐螯合物的分解会产生解吸的氧气,这可能是由于Pt上吸附的氧气和Tb氧化物上吸附的NO的反应所致。促进氧解吸是增强NO分解活性的有效方法。该研究为NO分解催化剂的发展指明了新的方向。 Tb- {美元} rm Pt / Alsb2Osb3 {美元}催化剂在实际应用中的潜力必须在空气,{rm} rm Hsb2O,{美元}和{美元} rm SOsb2 {美元}的影响下进一步确定。在稳态流动条件下。这项研究表明,对反应机理的基本了解对于设计和开发有效的NO分解和CO还原NO催化剂至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号