首页> 外文学位 >Interactions of WF(6) with TiN/Ti barriers during W chemical vapor deposition.
【24h】

Interactions of WF(6) with TiN/Ti barriers during W chemical vapor deposition.

机译:W化学气相沉积过程中WF(6)与TiN / Ti势垒的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Delamination of sputter-deposited TiN/Ti bilayers on SiO{dollar}sb2{dollar} is a serious problem during W chemical vapor deposition (CVD) using WF{dollar}sb6{dollar} gas to form vertical interconnects in integrated circuits. In order to obtain insight into the delamination mechanism, the microchemical changes occurring in the bilayers during WF{dollar}sb6{dollar} exposure have been studied in detail using a variety of spectroscopic and microscopic techniques. For the first time, the chemical reactions occurring at the buried surfaces of the bilayer have been studied quantitatively. The primary cause of delamination has been identified, and long-term solutions have been proposed.; The depth-distributions of W and F in sputter-deposited TiN/Ti bilayers on SiO{dollar}sb2{dollar} have been determined as a function of WF{dollar}sb6{dollar} exposure time t{dollar}rmsb{lcub}WFsb6{rcub}{dollar} at 445{dollar}spcirc{dollar}C. Even for short exposures {dollar}rm(tsb{lcub}WFsb6{rcub}<6{dollar} s), significant concentrations of both W ({dollar}approx{dollar}3.5 at%) and F ({dollar}approx{dollar}2 at%) penetrate through the 106-nm-thick TiN film. W piles up at the TiN/Ti interface, while F rapidly saturates the TiN layer and accumulates in the Ti underlayer at concentrations up to {dollar}approx{dollar}10 at% for t{dollar}rmsb{lcub}WFsb6{rcub}=60{dollar} s.; It is demonstrated that nanometer-scale intercolumnar voids (nanopipes) surrounding the TiN grains and spanning the entire film thickness act as fast diffusion paths allowing the gas-phase transport of WF{dollar}sb6{dollar} molecules. WF{dollar}sb6{dollar} dissociates and reacts with the top as well as the buried TiN surfaces provided by the nanopipes, depositing a few monolayers of W. The nanopipes are etched due to the evolution of TiF{dollar}sb4{dollar} as a byproduct. WF{dollar}sb6{dollar} molecules reaching the TiN/Ti interface react with the exposed surface of the Ti underlayer at the bottom of the nanopipes. As a result {dollar}approx{dollar}1 ML excess W is deposited at the interface and large quantities of F enter the Ti layer. F rejected from TiN by surface diffusion along the nanopipes and F{dollar}sb2{dollar} evolution also contribute to the fluorination of the Ti underlayer.; The sequence and mechanism of phase formation, and morphological changes occurring during the reaction of WF{dollar}sb6{dollar} with Ti have been elucidated for the first time. Ti reduction of WF{dollar}sb6{dollar} is a rapid process leading to W deposition at rates greater than that observed when SiH{dollar}sb4{dollar} or H{dollar}sb2{dollar} are used as reductants. At low WF{dollar}sb6{dollar} doses, Fluorine permeates hcp Ti lattice, forming a Ti-F solid solution. When the F concentration exceeds {dollar}approx{dollar}10 at%, which is shown to be the solubility limit of F in Ti, a non-volatile TiF{dollar}sb3{dollar} compound is formed. The large volume change occurring during TiF{dollar}sb3{dollar} formation results in the formation of microcracks in the W film. WF{dollar}sb6{dollar} enters through the microcracks and attacks the underlying Ti both laterally and vertically. The entire Ti film is etched away due to the evolution of gaseous TiF{dollar}sb4,{dollar} leaving behind a poor quality W film on the SiO{dollar}sb2{dollar} substrate.; F buildup in the Ti underlayer of TiN/Ti bilayers is suggested to be the major cause of delamination. High F concentration causes phase formation and alters the chemistry of the Ti/SiO{dollar}sb2{dollar} interface. Large stresses generated due to TiF{dollar}sb3{dollar} formation, and destruction of the Ti glue layer due to TiF{dollar}sb4{dollar} evolution jeopardize the adhesion of the TiN/Ti bilayer at the Ti/SiO{dollar}sb2{dollar} interface. The delamination problem can be alleviated by improving the TiN microstructure and/or by hastening the W nucleation process to minimize the interaction of WF{dollar}sb6{dollar} with
机译:在SiO {dollar} sb2 {dollar}上溅射沉积的TiN / Ti双层脱层是在W化学气相沉积(CVD)中使用WF {dollar} sb6 {dollar}气体在集成电路中形成垂直互连的严重问题。为了深入了解分层机制,已使用多种光谱和显微镜技术详细研究了WF {dollar} sb6 {dollar}暴露期间双层中发生的微化学变化。第一次,对在双层掩埋表面发生的化学反应进行了定量研究。已经确定了分层的主要原因,并提出了长期解决方案。已确定SiO {dollar} sb2 {dollar}上溅射沉积的TiN / Ti双层中W和F的深度分布是WF {dollar} sb6 {dollar}暴露时间t {dollar} rmsb {lcub}的函数WFsb6 {rcub} {dollar} at 445 {dollar} spcirc {dollar} C。即使是短暂的{{}} rm(tsb {lcub} WFsb6 {rcub} <6 {dol} s),W({dol}大约{dol}} 3.5 at%)和F({dollar}大约{美元} 2 at%)穿过厚度为106 nm的TiN薄膜。 W在TiN / Ti界面堆积,而F迅速使TiN层饱和并堆积在Ti底层中,其浓度高达t {dollar} rmsb {lcub} WFsb6 {rcub}的{dollar} approx {dollar} 10at% = 60 {dollar} s .;已经证明,围绕TiN晶粒并跨越整个膜厚度的纳米级柱间空隙(纳米管)充当快速扩散路径,允许WF {dollar} sb6 {dollar}分子的气相传输。 WF {dollar} sb6 {dollar}解离并与纳米管提供的顶部以及埋藏的TiN表面发生反应,并沉积了几层W。由于TiF {dollar} sb4 {dollar}的演化,纳米管被蚀刻了。作为副产品。到达TiN / Ti界面的WF {dollar} sb6 {dollar}分子与纳米管底部Ti底层的暴露表面发生反应。结果,在界面处沉积了约1ML的过量W,并且大量的F进入了Ti层。通过沿纳米管的表面扩散从TiN排斥的F和F {sb2 {dollar}的演化也有助于Ti底层的氟化。首次阐明了WF {dollar} sb6 {dollar}与Ti反应过程中发生相的顺序和机理,以及形态变化。 WF {dollar} sb6 {dollar}的Ti还原是导致W沉积的快速过程,其沉积速率大于使用SiH {sdol4 sb4 {dollar}或H {dollar} sb2 {dollar}还原剂时观察到的速率。在低WF {dolb} sb6 {dollar}剂量下,氟渗透到hcp Ti晶格中,形成Ti-F固溶体。当F的浓度超过F在Ti中的溶解度极限时,超过约10at%,则形成非挥发性的TiFsb3sb3化合物。 TiF {sb3 {dollar}形成期间发生的大体积变化导致W膜中形成微裂纹。 WF {dollar} sb6 {dollar}穿过微裂纹进入,并从侧面和垂直方向腐蚀下面的Ti。由于气态TiF {dollar} sb4 {dollar}的析出,整个Ti膜被蚀刻掉,在SiO {dollar} sb2 {dollar}衬底上留下了劣质的W膜。提示TiN / Ti双层Ti底层中的F堆积是分层的主要原因。高F浓度会导致相形成,并改变Ti / SiO {sb2 {dollar}}界面的化学性质。 TiF {dollar} sb3 {dollar}的形成会产生很大的应力,而TiF {dollar} sb4 {dollar}的演化会破坏Ti胶层,这会损害TiN / Ti双层在Ti / SiO {dollar}上的附着力sb2 {dollar}界面。分层问题可以通过改善TiN的微观结构和/或通过加快钨的成核过程来最小化WF {dol} sb6 {dollar}与

著录项

  • 作者

    Ganapathiraman, Ramanath.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Materials Science.; Engineering Metallurgy.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号