首页> 外文学位 >Atomic scale design and control of cation distribution in hexagonal ferrites for passive and tunable microwave magnetic device applications.
【24h】

Atomic scale design and control of cation distribution in hexagonal ferrites for passive and tunable microwave magnetic device applications.

机译:用于无源和可调微波磁性设备应用的六角形铁氧体中的原子标度设计和阳离子分布的控制。

获取原文
获取原文并翻译 | 示例

摘要

A vast body of knowledge on the structure and properties of hexagonal ferrites has been accumulated in the last sixty years driven in part by the technological significance of these materials in diverse applications, such as permanent magnets, microwave devices, and magnetic recording media. In this work, the Alternating Target Laser Ablation Deposition (ATLAD) technique is applied in the growth of epitaxial hexagonal ferrite films. As a result, unique magnetic properties, including 50 degrees increase in the Neel temperature and 20% increase in the saturation magnetization compared to conventionally prepared materials, are realized by controlling the cation distribution at the atomic scale.;Lowest energy distributions resulting from the localization of Mn cations in the spinel block of the hexagonal M-type unit cell were theoretically determined by ab-initio calculations. ATLAD deposition routine was designed to deposit epitaxial thin films with the cation distribution identified by ab-initio calculations. The films were fully characterized in terms of composition, crystal structure, surface morphology, static and dynamic magnetic properties, and cation distribution. Enhanced magnetic moment (+20%) and Neel temperature (+50 K) were measured in the films. These improved magnetic properties were correlated with the occupation and valence of specific interstitial sites by Mn cations, in good agreement with theoretical predictions. The localization of Mn cations in 4fIV and 12k sublattices has fundamentally modified superexchange interactions in the unit cell, as confirmed by spinwave resonance measurements.;A novel approach to the design of tunable microwave devices based on hexagonal and cubic ferrites by taking advantage of the magnetoelectric effect is presented. The proposed planar and compact devices, including phase shifters and filters, were designed in microstrip geometry with low magnetic bias field requirements. The devices were designed and simulated using commercial finite element software (Ansoft HFSS) for cubic ferrites and specially developed numerical method based on Galerkin's approach in spectral domain for highly anisotropic hexagonal ferrites. Prototypes were fabricated using standard photolithographic techniques. The active tuning of the devices was realized using voltage controlled magnetic fringe fields emanating from stress coupled magnetoelectric heterostructures. The proposed approach has the potential benefits of drastically reduced power consumption, improved response time, as well as reduced size, cost, and weight.
机译:在过去的六十年中,已经积累了关于六角形铁氧体结构和性能的大量知识,部分原因是这些材料在诸如永磁体,微波设备和磁记录介质等各种应用中的技术重要性。在这项工作中,交替目标激光烧蚀沉积(ATLAD)技术应用于外延六角形铁氧体薄膜的生长。结果,通过控制原子级的阳离子分布,可以实现独特的磁性能,包括与常规制备的材料相比,尼尔温度提高了50度,饱和磁化强度提高了20%。理论上通过从头算计算确定了六边形M型晶胞的尖晶石嵌段中的Mn阳离子。 ATLAD沉积程序设计为沉积外延薄膜,其阳离子分布由ab-initio计算确定。膜在组成,晶体结构,表面形态,静态和动态磁性能以及阳离子分布方面都得到了充分表征。在膜中测量增强的磁矩(+ 20%)和尼尔温度(+ 50K)。这些改善的磁性能与Mn阳离子对特定间隙位点的占据和化合价相关,与理论预测非常吻合。自旋波共振测量结果证实,Mn离子在4fIV和12k亚晶格中的定位从根本上改变了晶胞中的超交换相互作用。;一种利用六角形和立方铁氧体设计可调谐微波器件的新颖方法,利用磁电呈现效果。拟议的平面和紧凑型器件(包括移相器和滤波器)以微带几何结构设计,对磁场的要求低。使用商用有限元软件(Ansoft HFSS)对立方铁氧体进行了设计和仿真,并基于Galerkin方法在谱域内针对高度各向异性的六角形铁氧体专门开发了数值方法。原型是使用标准光刻技术制造的。通过使用应力耦合磁电异质结构产生的电压控制磁场边缘,实现了器件的主动调谐。所提出的方法具有极大地降低功耗,改善响应时间以及减小尺寸,成本和重量的潜在好处。

著录项

  • 作者

    Geiler, Anton L.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号