首页> 外文学位 >A finite element segregated method for thermo-chemical equilibrium and nonequilibrium hypersonic flows using adapted grids.
【24h】

A finite element segregated method for thermo-chemical equilibrium and nonequilibrium hypersonic flows using adapted grids.

机译:使用自适应网格的热化学平衡和非平衡超音速流的有限元分离方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation concerns the development of a loosely coupled, finite element method for the numerical simulation of 2-D hypersonic, thermo-chemical equilibrium and nonequilibrium flows, with an emphasis on resolving directional flow features, such as shocks, by an anisotropic mesh adaptation procedure. Since the flow field of such problems is chemically reacting and molecular species are vibrationally excited, numerical analyses based on an ideal gas assumption result in inaccurate if not erroneous solutions. Instead, hypersonic flows must be computed by solving the gasdynamic equations in conjunction with species transport and vibrational energy equations.; The number of species transport equations could be very high but is drastically reduced by neglecting the ionization, thus leaving one to represent the air by only five neutral species: O, N, NO, O{dollar}sb2{dollar} and N{dollar}sb2.{dollar} This system of equations is further simplified by considering an algebraic equation for conservation of the fixed nitrogen to oxygen ratio in air. The chemical source terms are computed according to kinetic models, with reaction rate coefficients given by Park's reaction models. All molecular species are characterized by a single vibrational temperature, yielding the well-known two-temperature thermal model which requires the solution of a single conservation equation for the total vibrational energy.; In this thesis, the governing equations are decoupled into three systems of PDEs--gasdynamic, chemical and vibrational systems--which are integrated by an implicit time-marching technique and discretized in space by a Galerkin-finite element method. This loosely-coupled formulation maintains the robustness of implicit techniques, while keeping the memory requirements to a manageable level. It also allows each system of PDEs to be integrated by the most appropriate algorithm to achieve the best global convergence. This particular feature makes a partially-decoupled formulation attractive for the extension of existing gasdynamic codes to hypersonic nonequilibrium flow problems, as well as for other applications having stiff source terms.; The hypersonic shocks are resolved in a cost-effective manner by coupling the flow solver to a directionally mesh adaptive scheme using an edge-based error estimate and an efficient mesh movement strategy. The accuracy of the numerical solution is continuously evaluated using a bound available from finite element theory. The Hessian (matrix of second derivatives) of a selected variable is numerically computed and then modified by taking the absolute value of its eigenvalues to finally produce a Riemannian metric. Using elementary differential geometry, the edge-based error estimate is thus defined as the length of the element edges in this Riemannian metric. This error is then equidistributed over the mesh edges by applying a mesh movement scheme made efficient by removing the usual constraints on grid orthogonality. The construction of an anisotropic mesh may thus be interpreted as seeking a uniform mesh in the defined metric.; The overall methodology is validated on various relevant benchmarks, ranging from supersonic frozen flows to hypersonic thermo-chemical nonequilibrium flows, and the results are compared against experimental data and, when not possible, to other computational approaches.
机译:本文涉及二维二维超音速,热化学平衡和非平衡流数值模拟的松耦合有限元方法的发展,重点是通过各向异性网格自适应程序来解决诸如冲击等定向流特征。 。由于此类问题的流场正在发生化学反应,并且分子物种受到振动激发,因此基于理想气体假设的数值分析会得出错误的解决方案,即使不是错误的解决方案。相反,必须通过结合物种迁移和振动能方程求解气体动力学方程来计算高超音速流。物种迁移方程的数量可能非常高,但是由于忽略了电离作用而大大减少,因此仅由五个中性物种代表一个空气:O,N,NO,O {s},sb2 {s}和N {美元} sb2。{dollar}通过考虑代数方程式可进一步简化该方程式,以保持空气中固定的氮氧比。化学物质项是根据动力学模型计算的,反应速率系数由Park的反应模型给出。所有分子种类的特征在于单一的振动温度,从而产生众所周知的两温热模型,该模型需要求解总振动能量的单一守恒方程。本文将控制方程解耦为PDE的三个系统-气动,化学和振动系统-它们通过隐式时间行进技术进行积分并通过Galerkin有限元方法在空间中离散化。这种松耦合的表述保持了隐式技术的鲁棒性,同时将内存需求保持在可管理的水平。它还允许通过最适当的算法集成每个PDE系统,以实现最佳的全局收敛。这个特殊的特征使得部分解耦的公式对于将现有的气体动力学代码扩展到高超声速非平衡流问题以及具有刚性源项的其他应用具有吸引力。通过使用基于边缘的误差估计和有效的网格运动策略,将流动求解器耦合到定向网格自适应方案,以高成本效益的方式解决高超声速冲击。使用有限元理论提供的边界不断评估数值解的准确性。对选定变量的Hessian(二阶导数矩阵)进行数值计算,然后通过取其特征值的绝对值进行修改以最终产生黎曼度量。因此,使用基本微分几何,将基于边缘的误差估计定义为该黎曼度量中元素边缘的长度。然后,通过应用通过消除网格正交性的常规约束而变得高效的网格移动方案,可以将该误差平均分布在网格边缘上。因此,各向异性网格的构造可以解释为在定义的度量中寻求均匀的网格。整个方法论在各种相关的基准上得到了验证,从超音速冻结流到高音速热化学非平衡流,并将结果与​​实验数据进行比较,并且在不可能的情况下与其他计算方法进行比较。

著录项

  • 作者

    Ait-Ali-Yahia, Djaffar.;

  • 作者单位

    Concordia University (Canada).;

  • 授予单位 Concordia University (Canada).;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号