首页> 外文学位 >Modeling Metallic Single Crystal Plastic Hardening through the Evolution of Dislocation Subgrain Structures.
【24h】

Modeling Metallic Single Crystal Plastic Hardening through the Evolution of Dislocation Subgrain Structures.

机译:通过位错亚晶粒结构的演变对金属单晶塑性硬化进行建模。

获取原文
获取原文并翻译 | 示例

摘要

A single crystal plasticity theory for insertion into finite element simulation is formulated using sequential laminates to model subgrain dislocation structures. It is known that local models do not adequately account for latent hardening, as latent hardening is not only a material property, but a nonlocal property (e.g., grain size and shape). The addition of the nonlocal energy from the formation of subgrain structure dislocation walls and the boundary layer misfits provide both latent and self hardening of crystal slip. Latent hardening occurs as the formation of new dislocation walls limit motion of new mobile dislocations, thus hardening future slip systems. Self hardening is accomplished by evolution of the subgrain structure length scale. No multiple slip hardening terms are included.;The substructure length scale is computed by minimizing the nonlocal energy. The minimization of the nonlocal energy is a competition between the dislocation wall and boundary layer energy. The nonlocal terms are also directly minimized within the subgrain model as they impact deformation response. The geometrical relationship between the dislocation walls and slip planes affecting dislocation mean free path is accounted for giving a first-order approximation to shape effects. A coplanar slip model is developed due to requirements when modeling the subgrain structure. This subgrain structure plasticity model is noteworthy as all material parameters are experimentally determined rather than fit. The model also has an inherit path dependency due to the formation of the subgrain structures. Validation is accomplished by comparison to single crystal tension test results.
机译:使用顺序叠层来模拟亚晶粒位错结构,从而提出了用于插入有限元模拟的单晶可塑性理论。已知局部模型不能充分考虑潜在的硬化,因为潜在的硬化不仅是材料性质,而且是非局部性质(例如,晶粒尺寸和形状)。由亚晶粒结构位错壁的形成和边界层失配所增加的非局部能量提供了晶体滑动的潜在和自硬化。由于新的位错壁的形成限制了新的移动位错的运动,因此发生了潜在的硬化,从而硬化了未来的滑移系统。自硬化是通过亚晶粒结构长度尺度的演变来实现的。不包括多个滑动硬化项。;通过最小化非局部能量来计算子结构长度尺度。非局部能量的最小化是位错壁与边界层能量之间的竞争。非局部项也会在变形模型中直接最小化,因为它们会影响变形响应。位错壁与影响位错平均自由程的滑移面之间的几何关系被解释为对形状效应给出了一阶近似。由于对亚晶粒结构进行建模时的要求,因此开发了共面滑动模型。这种亚晶粒结构的可塑性模型是值得注意的,因为所有材料参数都是通过实验确定而不是拟合。由于子粒结构的形成,该模型还具有继承路径依赖性。通过与单晶张力测试结果进行比较来完成验证。

著录项

  • 作者

    Hansen, Benjamin L.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Materials Science.;Chemistry Inorganic.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 93 p.
  • 总页数 93
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号