首页> 外文学位 >A numerical study of intergranular and oxidation-driven fracture in an elastic-viscoplastic material.
【24h】

A numerical study of intergranular and oxidation-driven fracture in an elastic-viscoplastic material.

机译:弹黏塑性材料中晶间和氧化驱动断裂的数值研究。

获取原文
获取原文并翻译 | 示例

摘要

The demand for improved performance in jet engines has led to a steady increase in the operating temperatures for gas turbine disks and blades. Modern nickel-base superalloys have been developed to withstand the resulting intense combination of thermal and mechanical loading. While improvements in alloy chemistry and material processing have largely overcome strength limitations, fatigue crack propagation at high temperatures still restricts the useful life of hot components. Environmental embrittlement controls high-temperature fatigue crack growth in polycrystalline nickel-base superalloys. However, the physics of this process is complex, and the detailed thermal, chemical, and mechanical mechanisms of crack growth are still not fully understood. Different mechanisms may be critical, depending on the particular alloy system and the specific thermomechanical loading. In some cases, two or more mechanisms may interact to cause crack growth.; This study focuses on one mechanism that is believed to be important in the fatigue response of high-temperature superalloys: intergranular fracture driven by the infiltration and embrittlement of grain boundaries by oxygen. A novel space-time finite element model is developed to study this mechanism. The numerical model provides the basis for generic investigations of the kinetics of quasi-static crack growth along a brittle interface (such as an oxidized grain boundary) embedded in an elastic-viscoplastic material. Additional studies illuminate the complex interactions between stress-assisted grain-boundary diffusion, inelastic material response and grain-boundary cleavage.
机译:对喷气发动机性能提高的需求导致燃气涡轮盘和叶片的工作温度稳定增加。已经开发出现代的镍基高温合金,以承受热负荷和机械负荷的强烈结合。尽管合金化学和材料加工方面的改进已大大克服了强度限制,但高温下的疲劳裂纹扩展仍然限制了热组件的使用寿命。环境脆化控制了多晶镍基高温合金中的高温疲劳裂纹扩展。但是,此过程的物理过程很复杂,并且裂纹扩展的详细热,化学和机械机理仍未完全理解。取决于特定的合金系统和特定的热机械负载,不同的机制可能至关重要。在某些情况下,两种或多种机制可能相互作用而导致裂纹扩展。这项研究集中于一种被认为在高温高温合金的疲劳响应中很重要的机制:由氧渗透和脆化晶界引起的晶间断裂。建立了一种新颖的时空有限元模型来研究这种机理。该数值模型为沿着埋在弹性粘塑性材料中的脆性界面(如氧化晶粒边界)的准静态裂纹扩展动力学的一般研究提供了基础。其他研究阐明了应力辅助的晶界扩散,非弹性材料响应和晶界分裂之间的复杂相互作用。

著录项

  • 作者

    Carranza, Fernando L.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Applied Mechanics.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 1997
  • 页码 115 p.
  • 总页数 115
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:48:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号