首页> 外文学位 >High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow.
【24h】

High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow.

机译:用于自然层流的高保真空气动力学形状优化。

获取原文
获取原文并翻译 | 示例

摘要

To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies.;In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients.;First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model.;The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition criteria. Using the eN transition criterion, the proposed framework is applied to the single and multipoint optimization of subsonic and transonic airfoils, leading to robust NLF designs. The aerodynamic design requirements over a range of cruise flight conditions are cast into a multipoint optimization problem through a composite objective defined using a weighted integral of the operating points. To study and quantify off-design performance, a Pareto front is formed using a weighted objective combining free-transition and fully-turbulent operating conditions. Next we examine the sensitivity of NLF design to the freestream disturbance environment, highlighting the on- and off-design performance at different critical N-factors. Finally, we propose and demonstrate a technique to enable the design of airfoils with robust performance over a range of critical N-factors.
机译:为了确保航空的长期可持续性,正在认真努力以减轻航空业不断升级的经济,环境和社会问题。通过研究先进的和非常规的机身和发动机技术,需要对航空运输的能源效率进行重大改进。;为减少机身阻力,本论文致力于开发和演示一种有效的改进设计工具。亚音速和跨音速机翼的空气动力学效率。目的是通过有效地吸收和利用层流湍流过渡现象,来提高高保真空气动力学形状优化的最新水平。开发并设计了自然层流(NLF)机翼的设计和优化框架,并具有过渡预测功能,能够预测雷诺数,自由流湍流强度,马赫数和压力梯度的影响。首先,二维雷诺平均Navier-Stokes(RANS)流动求解器已得到扩展,以合并迭代层流湍流过渡预测方法。使用Drela和Giles的简化eN包络方法或Arnal-Habiballah-Delcourt准则的可压缩形式,可以预测由于Tollmien-Schlichting不稳定性引起的自然过渡位置。边界层性质直接从Navier-Stokes流动解中获得,并使用间断函数结合Spalart-Allmaras湍流模型对湍流的过渡进行建模;随后将RANS求解器用于基于梯度的过程中顺序二次编程形状优化框架。层流湍流转换标准与客观评估和梯度评估紧密结合。使用新的增强的离散离散伴随公式获得非局部过渡准则的梯度。使用eN过渡标准,将所提出的框架应用于亚音速和跨音速机翼的单点和多点优化,从而实现稳健的NLF设计。通过使用工作点的加权积分定义的复合目标,将在一定范围的巡航飞行条件下的空气动力学设计要求转化为多点优化问题。为了研究和量化非设计性能,使用结合了自由过渡和完全湍流运行条件的加权目标来形成帕累托锋。接下来,我们研究NLF设计对自由流干扰环境的敏感性,重点介绍在不同关键N因子下的设计和非设计性能。最后,我们提出并演示了一种技术,可以使机翼的设计在一系列关键N因子上具有强大的性能。

著录项

  • 作者

    Rashad, Ramy.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Aerospace engineering.;Climate change.;Energy.;Alternative Energy.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号