首页> 外文学位 >Insights into low-angle normal fault initiation near the brittle-plastic transition; A micro- to macroscale documentation of the Mohave Wash Fault system, Chemehuevi Mountains, Southeastern CA.
【24h】

Insights into low-angle normal fault initiation near the brittle-plastic transition; A micro- to macroscale documentation of the Mohave Wash Fault system, Chemehuevi Mountains, Southeastern CA.

机译:洞察脆性塑性过渡附近的低角度正断层;加利福尼亚东南部Chemehuevi山脉Mohave Wash断层系统的微观到宏观文档。

获取原文
获取原文并翻译 | 示例

摘要

Rupture and continued slip on low-angle (≤30° dip) normal faults (LANFs) remain a mechanical paradox within our current understanding of deformation in the brittle crust. However, LANFs may form under distinct mechanical conditions, as weak faults or with atypical in-situ stresses, to allow formation within our current mechanical theory. In this thesis, I document a denuded LANF hosted in crystalline basement, the Mohave Wash Fault (MWF), active initially at the base of the seismogenic zone, in an effort to understand the evolution and mechanical properties of such faults during initiation and early slip.;Denuded exposures of the Miocene Chemehuevi detachment fault (CDF) system exposed in the Colorado River extensional corridor (CREC) provide a natural laboratory to study LANF initiation near the base of the seismogenic zone (~5 to >10 km paleodepth). The regional fault system formed with a gentle dip (≤30°) in heterogeneous gneissic and granitoid rocks, and is characterized by three stacked LANFs that initiated at 23 +/- 1 Ma. Originally, the CDF system spanned temperature conditions from ~150°C to >400°C, rooted to the brittle-plastic transition (BPT). The CDF preferentially localized ≥18 km of NE-directed slip rendering the deepest fault, the MWF, inactive after 1--2 km of slip preserving its original fault properties.;Across its 23-km down-dip exposure, the brittle MWF is a 10- to 60-meter thick zone dominated by cataclasite series fault rocks defined by discontinuous or anastomosing, altered principal slip zones within a damage zone of dense fractures that rarely host pseudotachylite. Altered portions of the principal slip zones were likely produced from fluid flow after initial rupture. The footwall to the MWF hosts localized quartz mylonites and Miocene dikes (of the Chemehuevi dikes swarm) bearing a penetrative mylonitic fabric that increase in volume, intensity, and estimated deformation temperature down-dip. Footwall mylonites are absent in the westernmost exposures of the fault to 9 km down dip; they are locally preserved from 9 to 23 km down dip, and widely distributed at ≥23 km down dip in the deepest exposures of the fault. Mylonitic deformation was accommodated by dislocation creep in quartz mylonites and by diffusion creep with grain boundary sliding in syntectonic dikes. These data support that initial extension occurred across the upper limit of the quartz brittle-plastic transition in a semi-brittle fashion through coeval brittle (seismogenic) slip on the MWF and localized to distributed footwall mylonitization.;The compositionally heterogeneous, calc-alkalic to alkali-calcic Miocene Chemehuevi dike swarm intruded into the footwall and damage zone of the CDF system during the first ~ 1.5--3.8 Ma of extension. Intermediate to felsic dikes truncated by the MWF were emplaced from 21.45 +/- 0.19 Ma to 19.21 +/- 0.15 Ma. These intermediate-to-felsic dikes do not exhibit a mylonitic fabric 0--18km down dip; in the deepest exposures (≥18 km down dip), they are gently folded, rotated, and host a well-developed mylonitic foliation at, even when hosted by non-mylonitic country rock. In contrast, mafic dikes were intruded episodically during early fault slip and, as such, are preserved within the MWF zone. The relative timing of dike emplacement implies that the CDF system operated in an "active rifting" environment with the main pulses of diking/magmatism prior to rapid, denudation-related CDF slip. Whereas the style of intrusion, deformation, and active rifting evolution of the Chemehuevi Dike swarm is well constrained, the mechanical influence of synextensional diking are less obvious.;I conclude that the MWF accommodated extension by coeval seismogenic rupture/brittle deformation at shallow depths, with plastic deformation at structurally deeper levels in the crust. This history was overprinted by a complex pattern of brittle slip, fluid flow, intrusive magmatism, and continued localization of strain manifested as footwall mylonitization in syntectonic dikes. Following these phases of MWF slip, regional slip localized onto the structurally shallower CDF rendering the MWF inactive. Despite the evidence of the CDF system forming in an active rifting environment, the MWF, a representative precursor to the CDF, lacks clear evidence of significant fault-weakening mechanisms or stress rotation during slip, and thus remains unexplained by Andersonian fault mechanics.
机译:在我们目前对脆性地壳变形的理解中,低角度(倾角≤30°)法向断裂(LANF)上的破裂和持续滑动仍然是一个机械悖论。但是,LANF可能在不同的机械条件下形成,如弱断层或具有非典型的原地应力,以允许在我们当前的力学理论中形成。在这篇论文中,我记录了一个以晶质基底为主体的裸露的LANF,即莫哈韦冲刷断层(MWF),其最初在震源带的底部活动,目的是了解这种断层在起初和早期滑移过程中的演化和力学性质。 。;在科罗拉多河延伸走廊(CREC)中暴露的中新世的Chemehuevi脱离断层(CDF)系统的裸露露露为研究地震成因带底部(古深度约5至10 km)附近的LANF起爆提供了自然实验室。区域断层系统在非均质片麻质和花岗岩岩石中以缓倾角(≤30°)形成,其特征是始于23 +/- 1 Ma的三个堆积的LANF。最初,CDF系统的温度条件从〜150°C到> 400°C,其根源于脆性塑性转变(BPT)。 CDF优先定位在≥18 km的NE定向滑移上,从而使最深的断层MWF在1--2 km滑移后仍保持原始断层特性而不再活动;在整个23 km下倾暴露中,脆性MWF为一个10到60米厚的区域,该区域以不连续或吻合的,主要的滑移带在不伴有假速闪石的致密裂缝破坏带内定义的白云母系列断层岩为主。初始破裂后,流体流动可能会产生主要滑移区的变化部分。 MWF的后壁容纳着局部的石英mylonite和中新世堤防(Chemehuevi堤防群),这些堤防带有渗透性的mylonitic织物,其体积,强度和估计的变形温度下倾增加。在断层最西端的下倾9 km处不存在下盘伏的镍铁矿。它们在下倾角9至23 km处被局部保存,并在断层最深的暴露中以≥23 km的下倾角广泛分布。石英性白斑岩中的位错蠕变和构造边界中的晶界滑动引起的扩散蠕变,可以适应髓鞘变形。这些数据支持通过在MWF上的同时期脆性(地震成因)滑移,以半脆性方式以半脆性方式跨越石英脆性-塑性转变的上限发生初始扩展;局部组成为分散的钙壁碱性。在延伸的第一个〜1.5--3.8 Ma期间,碱钙中新世Chem​​ehuevi堤防群侵入CDF系统的底壁和破坏区。由MWF截断的中等至长茎堤防从21.45 +/- 0.19 Ma放置到19.21 +/- 0.15 Ma。这些中等至长堤堤防在下倾0--18公里处不表现出似棉质的结构。在最深的暴露区域(向下倾角≥18 km)中,即使是在非晚辉石质坚石中,它们也会被轻柔地折叠,旋转并在其处发育出发育良好的mylonitic叶面。相反,在早期断层滑移期间,铁镁质堤防被侵入,因此被保留在MWF带内。堤防安置的相对时机意味着CDF系统在“主动裂谷”环境下运行,主要是堤防/岩浆作用的主要脉冲发生在快速,与剥蚀有关的CDF滑移之前。尽管Chemehuevi堤防群的侵入,变形和主动裂谷演化的样式受到了很好的限制,但同伸延伸堤防的机械影响却不那么明显。我得出结论,MWF通过在浅深度处的同年龄地震发生破裂/脆性变形来适应扩展,在地壳中在结构上更深的水平发生塑性变形。复杂的脆性滑移,流体流动,侵入性岩浆作用以及应变的持续局部化,使这一历史被印上了印记,这表现为在构造大堤中的下盘壁髓鞘化。在MWF滑移的这些阶段之后,区域滑移局限于结构较浅的CDF,从而使MWF处于非活动状态。尽管有证据表明在活跃的裂谷环境中形成了CDF系统,但MWF(CDF的代表性先兆)却缺乏明显的断层减弱机制或滑动过程中应力旋转的明显证据,因此,安德森断裂力学仍无法解释。

著录项

  • 作者

    LaForge, Justin S.;

  • 作者单位

    University of Wyoming.;

  • 授予单位 University of Wyoming.;
  • 学科 Geology.
  • 学位 M.S.
  • 年度 2016
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号