首页> 外文学位 >Quantum control and detection: Theory to reality, gas phase to condensed phase.
【24h】

Quantum control and detection: Theory to reality, gas phase to condensed phase.

机译:量子控制和检测:理论到现实,气相到凝聚相。

获取原文
获取原文并翻译 | 示例

摘要

Quantum control of molecular dynamics, defined as the use of tailored laser pulses to optimally drive a quantum system to a desired final outcome, has now been realized both theoretically and experimentally for several types of chemically interesting systems. Our goal is to find the light field which optimally drives a sample to a designated target. We formulate our control theory in terms of Liouville space density matrix language. The density matrix formalism has great advantages for dealing with mixed state systems, and allows a smooth transition from exact quantum to semiclassical and classical mechanics. The latter aspect is extremely important when we go beyond simple molecular systems. In the weak response regime, we study one-photon optimal pump and two-photon optimal pump-dump control. In both cases, the optimal control can be cast as an eigenvalue problem. The theory shows that for a simple system the dynamics can be efficiently controlled by optimal fields at low temperature. Since most of chemistry occurs in condensed phases, we also explore the controllability of these larger systems. Because the large dimensionality precludes exact quantum calculations, we employ nearly classical and semiclassical Gaussian wave packet dynamics. In condensed phase systems, many phenomena such as caging, solvent induced dephasing, energy relaxation and nonadiabatic curve crossing play important roles in chemical reactions. To better understand the system dynamics in the condensed phase, in particular the vibrational dynamics, we develop a phase space Redfield theory to study the relaxation and dephasing processes and compare it with the classical generalized Langevin equation (GLE) and the quantum Master equation. To prove that the target state has been realized, we employ pump-probe spectroscopy to monitor the effect of the optimal pump pulse on the subsequent molecular dynamics. For a thermally populated experimental sample, the final signal has to be properly averaged according to its thermal distribution. We develop an efficient way of calculating the total laser induced fluorescence (LIF) signal of a thermal sample quantum mechanically, and also implement it with classical molecular dynamics. This allows us to simulate the experimental observable under realistic conditions.
机译:分子动力学的量子控制,定义为使用量身定制的激光脉冲,以最佳方式驱动量子系统达到所需的最终结果,现已在理论上和实验上实现了几种化学上令人感兴趣的系统。我们的目标是找到可以最佳地将样品驱动至指定目标的光场。我们根据Liouville空间密度矩阵语言来表达我们的控制理论。密度矩阵形式主义在处理混合态系统方面具有很大的优势,并且允许从精确的量子平稳过渡到半经典和经典力学。当我们超越简单的分子系统时,后一个方面非常重要。在弱响应状态下,我们研究了单光子最优泵浦和两光子最优泵浦-卸载控制。在这两种情况下,最优控制都可以被视为特征值问题。该理论表明,对于一个简单的系统,可以通过低温下的最佳磁场有效地控制动力学。由于大多数化学反应都发生在凝聚相中,因此我们也探索了这些较大系统的可控性。由于大尺寸无法进行精确的量子计算,因此我们采用了近乎经典和半经典的高斯波包动力学。在凝聚相系统中,许多现象(例如笼罩,溶剂诱导的相移,能量弛豫和非绝热曲线交叉)在化学反应中起重要作用。为了更好地了解凝聚相中的系统动力学,特别是振动动力学,我们开发了相空间Redfield理论来研究弛豫和相移过程,并将其与经典广义Langevin方程(GLE)和量子Master方程进行比较。为了证明已经实现了目标状态,我们采用泵浦探针光谱法来监测最佳泵浦脉冲对后续分子动力学的影响。对于热填充的实验样品,最终信号必须根据其热分布进行适当平均。我们开发了一种有效的方法来机械地计算热样品量子的总激光诱导荧光(LIF)信号,并以经典的分子动力学实现它。这使我们能够模拟现实条件下的可观察实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号