首页> 外文学位 >Topics in quantum cryptography, quantum error correction, and channel simulation.
【24h】

Topics in quantum cryptography, quantum error correction, and channel simulation.

机译:量子密码学,量子纠错和信道仿真中的主题。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis, we mainly investigate four different topics: efficiently implementable codes for quantum key expansion [51], quantum error-correcting codes based on privacy amplification [48], private classical capacity of quantum channels [44], and classical channel simulation with quantum side information [49, 50].;For the first topic, we propose an efficiently implementable quantum key expansion protocol, capable of increasing the size of a pre-shared secret key by a constant factor. Previously, the Shor-Preskill proof [64] of the security of the Bennett-Brassard 1984 (BB84) [6] quantum key distribution protocol relied on the theoretical existence of good classical error-correcting codes with the "dual-containing" property. But the explicit and efficiently decodable construction of such codes is unknown. We show that we can lift the dual-containing constraint by employing the non-dual-containing codes with excellent performance and efficient decoding algorithms.;For the second topic, we propose a construction of Calderbank-Shor-Steane (CSS) [19, 68] quantum error-correcting codes, which are originally based on pairs of mutually dual-containing classical codes, by combining a classical code with a two-universal hash function. We show, using the results of Renner and Koenig [57], that the communication rates of such codes approach the hashing bound on tensor powers of Pauli channels in the limit of large block-length.;For the third topic, we prove a regularized formula for the secret key assisted capacity region of a quantum channel for transmitting private classical information. This result parallels the work of Devetak on entanglement assisted quantum communication capacity. This formula provides a new family protocol, the private father protocol, under the resource inequality framework that includes the private classical communication without the assisted secret keys as a child protocol.;For the fourth topic, we study and solve the problem of classical channel simulation with quantum side information at the receiver. Our main theorem has two important corollaries: rate-distortion theory with quantum side information and common randomness distillation. Simple proofs of achievability of classical multi-terminal source coding problems can be made via a unified approach using the channel simulation theorem as building blocks. The fully quantum generalization of the problem is also conjectured with outer and inner bounds on the achievable rate pairs.
机译:在本文中,我们主要研究四个不同的主题:用于量子密钥扩展的有效可实现代码[51],基于隐私放大的量子纠错代码[48],量子信道的私有经典容量[44]以及具有量子辅助信息[49,50] 。;对于第一个主题,我们提出了一种有效实施的量子密钥扩展协议,该协议能够将预共享密钥的大小增加一个恒定因子。以前,Bennett-Brassard 1984(BB84)[6]量子密钥分发协议的安全性的Shor-Preskill证明[64]依赖于理论上具有“双重包含”性质的经典纠错码的存在。但是,此类代码的明确且有效的可解码构造尚不清楚。我们证明了我们可以通过使用具有优异性能和高效解码算法的非双重代码来解除双重约束。对于第二个主题,我们提出了一种Calderbank-Shor-Steane(CSS)的结构[19, 68]量子纠错码,其最初是基于经典码和两个通用哈希函数的组合,该对码是基于互成对的经典码对。我们使用Renner和Koenig [57]的结果表明,在大块长度的限制下,此类代码的通信速率接近Pauli通道的张量幂的散列界限。用于传输私人经典信息的量子信道的密钥辅助容量区域的公式。该结果与Devetak在纠缠辅助量子通信能力方面的工作相类似。该公式在资源不平等框架下提供了一个新的家族协议,即私有父协议,该协议包括私有经典通信,而没有辅助秘密密钥作为子协议。;针对第四个主题,我们研究并解决了经典信道仿真问题接收器的量子辅助信息。我们的主要定理有两个重要的推论:具有量子辅助信息的速率失真理论和常见的随机蒸馏。可以使用信道仿真定理作为构建模块,通过统一的方法来简单证明经典的多终端源编码问题的可实现性。该问题的完全量子概化还可以通过可实现的速率对上的外部和内部界限来猜想。

著录项

  • 作者

    Luo, Zhicheng.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Physics Theory.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号