首页> 外文学位 >Quantum chemical computations of heterogeneous selective oxidation, STM images, and multiple bond reactions.
【24h】

Quantum chemical computations of heterogeneous selective oxidation, STM images, and multiple bond reactions.

机译:异构选择性氧化,STM图像和多重键反应的量子化学计算。

获取原文
获取原文并翻译 | 示例

摘要

Chapter one of this thesis describes first principles electronic structure computations performed to understand the mechanism of molecular oxygen activation by vanadyl pyrophosphate. The process is believed to play a key role in the catalytic oxidation of n-butane to maleic anhydride. The results obtained demonstrate that the mechanism involves at least two layers of vanadyl pyrophosphate crystal. Based on the computed energetics for small clusters, we propose an activation mechanism which involves the transfer of one oxygen atom from the first to the second layer of the crystal concerted with dioxygen activation by the first layer.; Chapter two describes a novel ab-initio computational technique, called GVB-RCI, which correctly describes the stretching and dissociation of multiple bonds and provides smooth potential energy surfaces for most chemical reactions. The technique is a special case of Multi Configuration SCF that does not have the Perfect Pairing restriction and still scales well with the size of the system. The capabilities and limitations of GVB-RCI are illustrated in the case of a few simple chemical reactions.; Chapter three contains a theoretical model describing the Scanning Tunneling Microscopy (STM) imaging of molecules adsorbed on graphite. The model is applicable to a variety of different molecules with reasonable computational effort, and provides images that are in qualitative agreement with experimental results. The model predicts that topographic effects will dominate the STM images of alkanes on graphite surfaces. The computations correlate well with the STM data of functionalized alkanes, and allow assessment of the structure and orientation of most of the functionalized alkanes that have been studied experimentally. In addition, the computations suggest that the highly diffuse virtual orbitals, despite being much farther in energy from the Fermi level of the graphite than the occupied orbitals of the adsorbed molecules, may play an important role in determining the STM image contrast of such systems.
机译:本论文的第一章描述了电子结构计算的第一原理,以理解焦磷酸氧钒激活分子氧的机理。据信该方法在正丁烷催化氧化成马来酸酐中起关键作用。获得的结果证明该机理涉及至少两层的氧钒基焦磷酸晶体。基于计算出的小团簇的能量,我们提出了一种激活机制,该机制涉及一个氧原子从晶体的第一层转移到第二层,以及第一层的双氧激活。第二章介绍了一种称为GVB-RCI的新型从头计算技术,该技术正确地描述了多个键的拉伸和解离,并为大多数化学反应提供了平滑的势能面。该技术是“多配置SCF”的特殊情况,它没有“完美配对”限制,并且仍然可以随系统大小灵活扩展。在一些简单的化学反应中说明了GVB-RCI的功能和局限性。第三章包含一个理论模型,描述了吸附在石墨上的分子的扫描隧道显微镜(STM)成像。该模型可通过合理的计算工作来应用于各种不同的分子,并提供与实验结果在质量上吻合的图像。该模型预测,地形效应将主导石墨表面上烷烃的STM图像。该计算与官能化烷烃的STM数据很好地相关,并允许评估已通过实验研究的大多数官能化烷烃的结构和取向。此外,计算结果表明,尽管与石墨的费米能级相比所吸收分子的占据轨道的能量远比石墨的费米能级高得多,但高度扩散的虚拟轨道可能在确定此类系统的STM图像对比度方面起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号