首页> 外文学位 >Solvent considerations in the thermodynamic driving forces for reversed-phase liquid chromatography.
【24h】

Solvent considerations in the thermodynamic driving forces for reversed-phase liquid chromatography.

机译:反相液相色谱的热力学驱动力中的溶剂注意事项。

获取原文
获取原文并翻译 | 示例

摘要

Reversed phase liquid chromatography (RPLC) is one of the most widely used analytical tools, but little is known about the fundamental driving force of retention in an RPLC system. The original intent of this work was to determine the ultimate driving force of retention and fundamental retention mechanism for RPLC. By looking at mobile phase solvation as well as stationary phase interactions with a variety of solutes over the entire mobile phase composition range from 0:100 to 100:0 (v/v) hydro-organic mixtures, one would hope to elucidau the driving force of separation. We have gained knowledge of the fundamental driving force for an RPLC separation, but there is no definitive answer for all solutes, mobile phase conditions nor stationary phase bonding densities.; Much work has been done to correlate methylene selectivity of different solutes. Instead a small hydrophobic model may be a better descriptor of solute partitioning into alkyl chains of the stationary phase. We looked at partitioning of a small nonpolar molecule, methane, and found that there was a change in retention mechanism over the temperature range studied, as evidenced by a change in slope for the van't Hoff plot. Even at 50/50 MeOH/H{dollar}sb2{dollar}O, the hydrophobic effect seems to be dominant for the small hydrophobic molecule. Larger molecules typically studied show linear van't Hoff relationships due to their inability to interact with stationary phase alkyl chains. This chromatographic system for methane was also determined to be entropically driven.; There have been many studies that look at shape selectivity effects on retention with large polycyclic aromatic hydrocarbons, but no studies have looked at the placement of an organic functional group on a benzene ring. These geometrical positional isomers are assumed to have the same oil-water partitioning thermodynamics, but we found that there are differences in thermodynamics of solute transfer, most notably the free energy, based upon where the functional group is placed. All isomer pairs studied showed similar results of an increase in free energy of solute partitioning with an increase in bonding density and the separation was found to he enthalpically driven under all conditions studied.
机译:反相液相色谱(RPLC)是使用最广泛的分析工具之一,但对于保留在RPLC系统中的基本驱动力知之甚少。这项工作的初衷是确定RPLC保留的最终驱动力和基本保留机制。通过研究流动相溶剂化以及固定相与各种溶质在整个流动相组成(从0:100到100:0(v / v))的有机混合物中的相互作用,人们希望能阐明驱动力分离。我们已经了解了RPLC分离的基本驱动力,但是对于所有溶质,流动相条件或固定相键合密度都没有确切的答案。已经进行了许多工作来关联不同溶质的亚甲基选择性。取而代之的是,小的疏水模型可能是溶质分配到固定相烷基链中的更好描述。我们研究了一个小的非极性分子甲烷的分配,发现在研究的温度范围内保留机理发生了变化,这可以通过范霍夫图的斜率变化来证明。即使在50/50 MeOH / H {sb2 {dollar} O)下,疏水作用似乎仍是小的疏水分子的主导。通常研究的较大分子由于无法与固定相烷基链相互作用而显示线性范霍夫关系。该甲烷色谱系统也被确定是由熵驱动的。已经有许多研究关注形状选择性对大型多环芳烃的保留的影响,但没有研究关注有机官能团在苯环上的位置。假定这些几何位置异构体具有相同的油水分配热力学,但我们发现,根据官能团的位置,溶质转移(尤其是自由能)的热力学存在差异。所有研究的异构体对都显示出类似的结果,即溶质分配的自由能随键合密度的增加而增加,并且发现在所有研究的条件下,该分离都是由焓驱动的。

著录项

  • 作者

    Wysocki, Jessica Lynn.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Chemistry Analytical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 222 p.
  • 总页数 222
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号