首页> 外文学位 >Computational fluid dynamics simulation of blast furnace hearth drainage.
【24h】

Computational fluid dynamics simulation of blast furnace hearth drainage.

机译:高炉炉膛排水的计算流体动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

Iron and slag are the products from blast furnace and normally drained out as a mixture via taphole. Two tapholes are opening alternatively in the large-scale blast furnace hearth. After the taphole switches, molten iron is only tapped out at the first few minutes. This phenomenon is observed widely in the large-scale blast furnace and it is called the Slag delay. Due to the high temperature and high pressure inside the furnace, it is hard to execute real-time observations. A CFD model is developed to study the fluids of iron, slag, and gas inside the blast furnace hearth. This numerical simulation was performed by finite volume method that considers the key forces involved, including the gravity, buoyancy, and the drag between liquid-solid and liquid-liquid. The pressure difference between the liquid surface inside furnace and outside the atmosphere induces the pitting of the liquid surface during the liquids tapping. Consequently, when the bottom of pit reaches the taphole, the gas is drained out through the pit. The computational simulation results by liquid level model are consistent with the observations in the physical water model experiment. The gas is drained out at the water surface still above the taphole level. The pit cause by gas pressure forms a pathway of gas. The experiments show that it is possible to drain out the gas before liquid level attaches the taphole. Calculations are presented which suggest that under actual blast furnace conditions the gas can be drained out during the slag-iron interface is still above the taphole. This scenario in liquid level during the drainage successfully explains the slag delay in the research.
机译:铁和矿渣是高炉的产物,通常以混合物的形式通过出铁孔排出。在大型高炉炉膛中,两个出铁孔交替打开。出铁口切换后,仅在最初的几分钟内放出铁水。这种现象在大型高炉中被广泛观察到,这被称为炉渣延迟。由于炉内的高温和高压,很难执行实时观察。开发了一个CFD模型来研究高炉炉膛内的铁,炉渣和气体的流体。该数值模拟是通过有限体积方法进行的,其中考虑了所涉及的关键力,包括重力,浮力以及液固和液液之间的阻力。出炉过程中,炉内和大气外部的液面之间的压力差会引起液面的点蚀。因此,当凹坑的底部到达出铁口时,气体通过凹坑排出。液位模型的计算仿真结果与物理水模型实验中的观察结果一致。气体从仍高于出水口水位的水面排出。由气压引起的凹坑形成了气体的通道。实验表明,有可能在液位附着到出铁孔之前将气体排出。提出的计算结果表明,在实际的高炉条件下,炉渣-铁界面仍在出铁孔上方时,可以将气体排出。排水过程中液位的这种情况成功地解释了研究中的矿渣延迟。

著录项

  • 作者

    Leu, Chao-Lun.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.E.
  • 年度 2010
  • 页码 70 p.
  • 总页数 70
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号