首页> 外文学位 >Optical and electro-optical properties of bacterial photosynthetic reaction centers.
【24h】

Optical and electro-optical properties of bacterial photosynthetic reaction centers.

机译:细菌光合作用反应中心的光学和光电特性。

获取原文
获取原文并翻译 | 示例

摘要

The bacterial photosynthetic reaction center (RC) is responsible for the initial photo-induced electron transfer in photosynthesis. The special pair P in the RC is a pair of closely interacting bacteriochlorophylls (BChl). Its electronic absorption spectrum is very broad and qualitatively different from that of monomeric BChl. The P band becomes even broader when one of the BChls is replaced by a bacteriopheophytin (BPhe) to form a heterodimer. When hydrogen bonds from the protein to conjugated carbonyl groups of the heterodimer are added/removed, the absorption of heterodimer exhibits further systematic variations. We postulate an intradimer charge resonance interaction for the excited state of the special pair and this leads to predictions for the absorption line shape. We conclude that an intermediate coupling limit applies to the heterodimer, the coupling and energetics of an intradimer charge transfer (CT) state are obtained directly from the absorption spectrum. This model satisfactorily explains the heterodimer absorption line shapes in various heterodimer/hydrogen bond mutants. A novel resonance Stark effect is discovered for the monomeric BChl absorption in the RC. Its molecular origin is explored by comparing results from RCs in which neighboring chromophores or the immediate protein environment is modified. These results collectively demonstrate that this resonance Stark effect is related to both the monomeric BChl and BPhe on the functional pathway of the RC. A theory of the resonance Stark effect is developed based on a weak coupling limit for a donor-acceptor complex. It predicts a series of Stark line shapes depending primarily on the driving force for electron transfer. They closely resemble the series of experimental resonance Stark spectra for the B band of several RC variants. Analysis of the trends leads to the conclusion that these resonance Stark effects are due to coupling between the {dollar}sp1{lcub}rm B{rcub}sb{lcub}rm L{rcub}{dollar} and B{dollar}rmsb{lcub}L{rcub}sp+Hsb{lcub}L{rcub}sp-{dollar} states. The lifetime of this reaction in WT Rb. sphaeroides RC is estimated to be 3.3 ps. These results have implications for the mechanism of the initial electron transfer in the RC. The resonance Stark spectroscopy should be generally applicable to study photo-induced electron transfer.
机译:细菌光合作用反应中心(RC)负责光合作用中的初始光诱导电子转移。 RC中的特殊P对是一对紧密相互作用的细菌叶绿素(BChl)。它的电子吸收光谱非常宽泛,并且在质量上与单体BChl不同。当一个BChls被细菌脱镁叶绿素(BPhe)取代形成异二聚体时,P带变得更宽。当从蛋白质到异二聚体的共轭羰基的氢键被添加/去除时,异二聚体的吸收表现出进一步的系统变化。我们假设特殊对的激发态存在二聚体内部电荷共振相互作用,这导致对吸收线形状的预测。我们得出的结论是,中间耦合限制适用于异二聚体,二聚体内电荷转移(CT)状态的耦合和高能直接从吸收光谱中获得。该模型令人满意地解释了各种异二聚体/氢键突变体中的异二聚体吸收线形状。对于RC中的单体BChl吸收,发现了新的共振斯塔克效应。通过比较修饰邻近发色团或直接蛋白质环境的RC的结果来探索其分子起源。这些结果共同证明,该共振斯塔克效应与RC的功能途径上的单体BChl和BPhe都相关。基于供体-受体复合物的弱耦合极限,发展了共振斯塔克效应的理论。它主要取决于电子传输的驱动力来预测一系列Stark线形。它们与几个RC变体的B波段的实验共振斯塔克光谱系列非常相似。对趋势的分析得出的结论是,这些共振斯塔克效应是由于{dol} sp1 {lcub} rm B {rcub} sb {lcub} rm L {rcub} {dollar}和B {dollar} rmsb { lcub} L {rcub} sp + Hsb {lcub} L {rcub} sp- {dollar}状态。 WT Rb中该反应的寿命。估计sphaeroides RC为3.3 ps。这些结果对RC中初始电子转移的机理有影响。共振斯塔克光谱通常应适用于研究光致电子转移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号