首页> 外文学位 >The combustion performance of nanosilicon based energetic materials .
【24h】

The combustion performance of nanosilicon based energetic materials .

机译:纳米硅基含能材料的燃烧性能。

获取原文
获取原文并翻译 | 示例

摘要

The reactive properties of energetic composite materials change dramatically within the nanoscale domain, below 100 nm. Nanoenergetic composites, or nanoenergetics, have high surface areas, small diffusion scales, and consequently dramatically faster reaction rates. This thesis reports work done to characterize the combustion performance of silicon-based nanoenergetic composites in order to give us a better understanding of their properties so that they can be tailored to specific applications. Specifically, the combustion properties of silicon nanopowder(nSi) energetic composites and nanoporous silicon (nPSi) energetic composites are studied.;This thesis contains a thorough review the current state of silicon-based reactives, focusing on fabrication and combustion of nPSi-based energetic composites and also on the combustion of nSi-based energetic composite.;The Combustion properties of nSi composites were studied by performing equilibrium calculations, "flame tests", instrumented burn tube experiments and micro capillary tube burns. Equilibrium calculations show that the maximum predicted flame temperature for many Si/oxidizer systems is about 3000 K, with some exceptions. Specifically, the calculated flame temperatures for Si/metal oxides systems ranged from 2282 to 2978 K. Theoretical maximum gas production of the Si composites ranged from 350-6500 cm3/g, with Si/NH4ClO4 producing the most gas and Si/Fe2O3 producing the least.;Composites consisting of nSi/NH4ClO4, nSi/KMnO 4, and nSi/NaClO4 x H2O were tested in instrumented burn tubes. The composite nSi/NH4ClO4 showed the fastest burning rates which approached 530 m/s.;Micro-capillary tubes were loaded with nSi/CuO and nSi/Bi2O 3 composites. Successful combustion propagation of these systems was achieved in capillary tubes with inner diameters of 150 and 250 mum .;The combustion performance of oxidizer filled nanoporous silicon (nPSi) was also studied. nPSi samples with diameters of 2.54 cm were fabricated by electrochemical etching. The porosity of the samples ranged from 50% to 82%. The samples were cut into 3-5 mm strips and filled with an oxidizer. The nPSi samples were filled with the oxidizers NaClO4 x 1H2O, Ca(ClO4)2 x 4H2O, sulfur and perfluoropolyether (PFPE). The loaded nPSi was then burned by igniting the sample with a hot Nichrome(TM) wire. The experiments were recorded using high speed photography from which burning rates were calculated. The burning rates did showed a strong dependency on quality of the oxidizer loading. The nPSi loaded with NaClO4 x 1H2O produced burning rates that ranged from 115-550 cm/s. nPSi loaded with Ca(ClO 4)2 x 4H2O had burning rates of 145-285 cm/s. A sulfur filled nPSi sample burned a rate of 16 to 290 cm/s, and perfluoropolyether loaded PSi burned at a rate of 1.4 cm/s.
机译:高能复合材料的反应特性在100 nm以下的纳米级域内发生巨大变化。纳米高能复合材料(或纳米高能学)具有较高的表面积,较小的扩散尺度,因此反应速度显着加快。本论文报告了为表征硅基纳米高能复合材料的燃烧性能所做的工作,以使我们对它们的性能有更好的了解,从而可以针对特定应用进行定制。具体而言,研究了硅纳米粉(nSi)高能复合材料和纳米孔硅(nPSi)高能复合材料的燃烧性能。;本文对硅基反应物的现状进行了全面回顾,重点研究了nPSi基高能材料的制备和燃烧。 nSi基高能复合材料的燃烧性能。通过进行平衡计算,“火焰测试”,仪器化的燃烧管实验和微毛细管燃烧来研究nSi复合材料的燃烧性能。平衡计算表明,除了某些例外,许多Si /氧化剂系统的最高预测火焰温度约为3000K。具体来说,计算得出的Si /金属氧化物系统的火焰温度范围为2282至2978K。Si复合材料的理论最大产气量为350-6500 cm3 / g,其中Si / NH4ClO4产气最多,Si / Fe2O3产气量最大。在仪器燃烧管中测试了由nSi / NH4ClO4,nSi / KMnO 4和nSi / NaClO4 x H2O组成的复合材料。复合材料nSi / NH4ClO4的燃烧速度最快,接近530 m / s。微毛细管中装有nSi / CuO和nSi / Bi2O 3复合材料。这些系统在内径分别为150和250μm的毛细管中成功实现了燃烧传播。;还研究了氧化剂填充的纳米多孔硅(nPSi)的燃烧性能。通过电化学蚀刻制备了直径为2.54 cm的nPSi样品。样品的孔隙率范围为50%至82%。将样品切成3-5mm的条,并填充氧化剂。在nPSi样品中填充氧化剂NaClO4 x 1H2O,Ca(ClO4)2 x 4H2O,硫和全氟聚醚(PFPE)。然后通过用热的Nichrome TM线点燃样品来燃烧加载的nPSi。使用高速摄影记录实验,由此计算燃烧速率。燃烧速率确实显示出对氧化剂负载质量的强烈依赖性。装有NaClO4 x 1H2O的nPSi产生的燃烧速率为115-550 cm / s。装有Ca(ClO 4)2 x 4H2O的nPSi的燃烧速率为145-285 cm / s。填充硫的nPSi样品的燃烧速率为16至290 cm / s,负载全氟聚醚的PSi的燃烧速率为1.4 cm / s。

著录项

  • 作者

    Mason, Benjamin Aaron.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 M.S.M.E.
  • 年度 2010
  • 页码 87 p.
  • 总页数 87
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号