首页> 外文学位 >Thermal stress prediction for direct-chill casting of a high strength aluminum alloy.
【24h】

Thermal stress prediction for direct-chill casting of a high strength aluminum alloy.

机译:高强度铝合金直接冷铸的热应力预测。

获取原文
获取原文并翻译 | 示例

摘要

Direct chill (D.C.) casting is one of the most important semi-continuous methods for the production of high strength aluminum alloys. The enormous unevenly cooling of ingots during the casting process can cause significant thermally induced stresses, which may result in solidification cracking. The control of the cracking during DC casting is a state-of-art technology, and many finite element models have been applied to simulate the solidification process during ingot casting. So far, most of the simulations can predict the thermal fields of the ingot accurately, but very few works can get satisfactory thermal stress profiles. One of the major difficulties is the lack of valid thermo-mechanical properties for constitutive modeling of as-cast ingots.; The mechanical properties of a high strength aerospace aluminum alloy 7050 was studied in the as-cast ingot form. A thermo-elastic-plastic constitutive model was adopted to summarize the ingot strength and deformation behavior over a wide temperature range from the melting point to room temperature. In addition, the dependence of ingot properties on the casting structure as well as the cooling history at different ingot locations were determined. The cooling history of 7050 ingots can be divided into two portions at every location. The solidification rate between liquidus (635{dollar}spcirc{dollar}C/1175{dollar}spcirc{dollar}F) and solidus (524{dollar}spcirc{dollar}C/975{dollar}spcirc{dollar}F) decides the cast microstructure, which exhibits various coarse grain structures with notable dendrite segregation. After solidification, the cooling rate of solid ingots will influence the formation of the precipitation phases and their morphology. Both portions of the cooling history were considered as the parameters in the constitutive models. A finite element model (FEM) was developed to predict the thermal stress distribution in DC cast aluminum ingots by employing a commercial FEM code ABAQUS. The in-situ measured temperature profiles was input as the thermal conditions through a user subroutine, and the material constitutive model was employed in the modeling. In addition, fracture toughness of as-cast ingots was investigated experimentally through on-cooling K{dollar}sb{lcub}rm IC{rcub}{dollar} tests for material from the center and surface of Al-7050 ingot.
机译:直接冷(DC)铸造是生产高强度铝合金的最重要的半连续方法之一。铸造过程中铸锭的巨大不均匀冷却会引起明显的热应力,从而可能导致凝固裂纹。直流铸造过程中裂纹的控制是一项最新技术,并且许多有限元模型已应用于模拟铸锭过程中的凝固过程。到目前为止,大多数模拟都可以准确地预测铸锭的热场,但是很少有工作可以获得令人满意的热应力曲线。主要困难之一是铸锭的本构模型缺乏有效的热机械性能。以铸锭形式研究了高强度航空航天铝合金7050的机械性能。采用热弹塑性本构模型总结了从熔点到室温的宽温度范围内的铸锭强度和变形行为。此外,确定了铸锭性能对铸件结构的依赖性以及不同铸锭位置的冷却历史。 7050锭的冷却历史可在每个位置分为两部分。液相线(635 {sp} {C} 1175 {sp} {F}和固相线(C / 975 {sp} {975} f 524)的固相线速度决定了铸态组织,表现出各种粗大晶粒组织,并具有明显的枝晶偏析。凝固后,固态锭的冷却速率将影响沉淀相的形成及其形态。冷却历史的两个部分都被视为本构模型中的参数。通过使用商业有限元代码ABAQUS,开发了一个有限元模型(FEM)来预测DC铸铝锭中的热应力分布。通过用户子例程将现场测量的温度曲线作为热条件输入,并且在模型中采用了材料本构模型。另外,通过对Al-7050铸锭中心和表面的材料进行冷却K {dollar} sb {lcub} rm IC {rcub} {dollar}试验,对铸锭的断裂韧性进行了实验研究。

著录项

  • 作者

    Wan, Jian.;

  • 作者单位

    West Virginia University.;

  • 授予单位 West Virginia University.;
  • 学科 Engineering Mechanical.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号