首页> 外文学位 >Direct numerical simulation of transitions toward turbulence in complex channel flows.
【24h】

Direct numerical simulation of transitions toward turbulence in complex channel flows.

机译:复杂通道流中湍流过渡的直接数值模拟。

获取原文
获取原文并翻译 | 示例

摘要

A new numerical tool for the direct numerical simulation (DNS) of instability and transition to turbulence is presented. The Navier-Stokes equations for incompressible flow are solved in generalized curvilinear coordinates so that channel flows may be investigated in which the walls of the channel are both curved and wavy. The channel geometry and the flow solution are assumed to be periodic in the streamwise and spanwise directions. A Fourier/Chebyshev spectral collocation method is employed. Both fully- and semi-implicit second-order integration methods are used, with the velocity and pressure fully-coupled. The multi-level iteration scheme used to solve this system consists of Newton's method on the outer level, and the GMRES scheme for sub-iterations. The large linear algebra system obtained from the linearization of the spatial discretization and coupled velocity and pressure is preconditioned through an approximate factorization of the linearized Navier-Stokes operator which decouples the solutions of the velocity and pressure updates in the iterative algorithm. The pressure system is preconditioned by left and right Fourier transform operators followed by a block Jacobi approximation.; This numerical technique is applied to problems of instability and transition in curved channel flows with and without wall waviness. Detailed validations are performed by repeating the results of Finlay, Keller and Ferziger (JFM, vol. 194, 1988) and Ligrani et al. (Phys. Of Fluids A, vol. 4, no. 4, 1992) for two- and three-dimensional Dean vortex flows in a curved channel. New results are obtained for curved channel flows with two-dimensional small amplitude wall waviness. The waviness significantly alters the evolution of both Dean vortex and Tollmien-Schlichting wave instabilities. In particular, the waviness modifies the traveling wave twisting Dean vortex solution of Ligrani et al., for Reynolds number 409, and results in a highly oscillatory state. Waviness also modifies the secondary instability of Tollmien-Schlichting waves at Reynolds number 5000 by forcing asymmetry in the three-dimensional lambda-vortex structures near the upper and lower walls of the channel.; This work is supported, in part, by the Department of Defense NDSEG Fellowship program, NSF grant no. CTS95-12450, Ohio Supercomputer Center grant no. PES070-5, and AFOSR grant no. F49620-93-1-0393.
机译:提出了一种用于不稳定性和湍流过渡的直接数值模拟(DNS)的新数值工具。在广义曲线坐标中求解不可压缩流的Navier-Stokes方程,以便可以研究通道壁弯曲且呈波浪形的通道流动。假定通道的几何形状和流动解在流向和跨度方向上是周期性的。采用了傅里叶/切比雪夫光谱配置方法。速度和压力完全耦合,使用全隐式和半隐式二阶积分方法。用于求解该系统的多级迭代方案由外部层的牛顿方法和子迭代的GMRES方案组成。通过空间离散化以及耦合的速度和压力的线性化获得的大型线性代数系统通过线性化Navier-Stokes算子的近似因式分解来进行预处理,该算子在迭代算法中解耦速度和压力更新的解。压力系统由左和右傅立叶变换算子进行预处理,然后进行块雅可比逼近。此数值技术适用于有壁波纹和无壁波纹的弯曲通道流动的不稳定性和过渡问题。通过重复Finlay,Keller和Ferziger(JFM,第194卷,1988年)和Ligrani等人的结果进行详细的验证。 (Phys.of Fluids A,第4卷,第4期,1992),用于二维和三维Dean涡流在弯曲通道中的流动。对于具有二维小振幅壁波纹的弯曲通道流,获得了新的结​​果。波纹极大地改变了迪安涡旋和托尔米恩-施利希廷波的不稳定性。尤其是,波度修改了Ligrani等人的行波扭曲Dean涡旋解(对于雷诺数409),并导致高度振荡状态。波度通过强迫通道上下壁附近的三维λ-涡旋结构不对称,从而改变了雷诺数为5000时Tollmien-Schlichting波的次要不稳定性。这项工作在一定程度上受到美国国防部NDSEG奖学金计划的支持,美国国家科学基金会(NSF)批准号为CTS95-12450,俄亥俄州超级计算机中心授权号。 PES070-5和AFOSR授予编号F49620-93-1-0393。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号