首页> 外文学位 >Biophysical and physiologic characterization of cardiac troponin T mutations in the TNT1 domain that cause FHC.
【24h】

Biophysical and physiologic characterization of cardiac troponin T mutations in the TNT1 domain that cause FHC.

机译:TNT1域中导致FHC的心肌肌钙蛋白T突变的生物物理和生理学表征。

获取原文
获取原文并翻译 | 示例

摘要

Cardiac troponin T (cTnT) is a central modulator of thin filament regulation of myofilament activation. Mutations found in cTnT are associated with Familial Hypertrophic Cardiomyopathy, a primary cardiac muscle disorder that is one of the most common causes of sudden death in young people in the field. Cardiac TnT residue 92, flanking the TNT1 N-terminal tail domain, has been shown to be a mutational "hotspot" resulting in variable complex, cardiovascular phenotypes. The lack of structural data for the TNT1 tail domain, a proposed alpha-helical region, makes functional implications of FHC mutations difficult to determine. Studies have suggested that flexibility of TNT1 is important in normal protein-protein interactions within the thin filament. Through Molecular Dynamics (MD) simulations, we showed that R92 and R94 FHC mutations cause local alpha-helical structural alterations, changes in local forces, and increased flexibility at a critical hinge region 18 Angstroms distant from the mutation. We hypothesize that these local structural alterations in mutational cTnT segments lead to electrostatic perturbations, possibly interfering with cTnT-TM complex formation and thin filament function. In vitro motility assays with wildtype-cTnT and hotspot FHC-cTnT mutants support this hypothesis, whereby local structural alterations correlated with global changes in the cooperativity of thin filament regulatory function. Moreover, to determine the mechanistic links between the primary mutational effects on FHC-cTnT structure/function and resultant cardiovascular phenotypes, we characterized the myocellular response of several transgenic mouse models carrying cTnT mutations corresponding to the peptides studied via MD (R92L and R92W). Results showed that independent cTnT mutations in the TNT1 domain resulted in primary mutation-specific effects and differential temporal onset of altered myocellular mechanics, Ca2+ kinetics, and Ca 2+ homeostasis. For R92L, control of Ca2+ handling and homeostasis suggested unique pathogenic mechanisms at the level of the myofilament taking precedence, while R92W pathogenesis invoked both Ca 2+ handling and myofilament level mechanisms. Additionally, the beta-adrenergic response of the heart plays a role in the differential disease progression of the R92 FHC mutations. Together with the primary perturbations on structure and function, these downstream myocellular responses reveal complex mechanisms, which may contribute to the clinical variability in cTnT-related FHC mutations.
机译:心肌肌钙蛋白T(cTnT)是细丝调节肌丝活化的主要调节剂。 cTnT中发现的突变与家族性肥大性心肌病有关,后者是原发性心肌病,是该领域年轻人猝死的最常见原因之一。已显示位于TNT1 N末端尾部结构域侧翼的心脏TnT残基92是突变“热点”,导致可变的复杂心血管表型。 TNT1尾部结构域(一个拟议的α-螺旋区)缺乏结构数据,使得FHC突变的功能影响难以确定。研究表明,TNT1的柔韧性在细丝内正常的蛋白质-蛋白质相互作用中很重要。通过分子动力学(MD)模拟,我们显示R92和R94 FHC突变引起局部α-螺旋结构改变,局部力变化以及在距突变18埃的关键铰链区增加的柔性。我们假设突变cTnT段中的这些局部结构改变会导致静电干扰,可能会干扰cTnT-TM复合物的形成和细丝功能。用野生型cTnT和热点FHC-cTnT突变体进行的体外运动分析支持这一假说,即局部结构改变与细丝调节功能协同作用的整体变化相关。此外,为了确定对FHC-cTnT结构/功能的主要突变作用与所得心血管表型之间的机制联系,我们表征了几种携带cTnT突变的转基因小鼠模型的肌细胞反应,这些突变对应于通过MD研究的肽(R92L和R92W)。结果显示,TNT1结构域中独立的cTnT突变导致原发性突变特异性效应,并改变了心肌细胞力学,Ca2 +动力学和Ca 2+稳态的时间差异。对于R92L,控制Ca2 +处理和体内稳态表明,在肌丝水平上具有独特的致病机制优先,而R92W的发病机理同时涉及Ca 2+处理和肌丝水平机制。此外,心脏的β-肾上腺素能反应在R92 FHC突变的疾病进展中起着重要作用。连同对结构和功能的主要扰动,这些下游的肌细胞反应揭示了复杂的机制,这可能与cTnT相关的FHC突变的临床变异性有关。

著录项

  • 作者

    Guinto, Pia J.;

  • 作者单位

    Yeshiva University.;

  • 授予单位 Yeshiva University.;
  • 学科 Biology Animal Physiology.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 180 p.
  • 总页数 180
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生理学;生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:37:38

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号