首页> 外文学位 >Oxidation-reduction potential and organic carbon sources as two control parameters for simultaneous nitrification and denitrification in biological nutrient removal processes.
【24h】

Oxidation-reduction potential and organic carbon sources as two control parameters for simultaneous nitrification and denitrification in biological nutrient removal processes.

机译:氧化还原电位和有机碳源是生物营养去除过程中同时硝化和反硝化的两个控制参数。

获取原文
获取原文并翻译 | 示例

摘要

The main objective of this study was to demonstrate the feasibility of achieving carbon (C), nitrogen (N) and phosphorus (P) removal from domestic sewage, in a two-stage intermittent aeration (IA) process, under conditions favorable to simultaneous nitrification and denitrification (SND).; It was demonstrated in this study that, under the above operating conditions, the two-stage process achieved levels of N, P and C removals, similar to the 3-Bardenpho process operated at a dissolved oxygen (DO) concentration of 3 mg/L. It was possible to simultaneously reduce the influent total nitrogen concentration from 24-32 mgN/L to 6-12 mgN/L and the influent total phosphorus concentration from 3.0-6.0 mgP/L to less than 1 mgP/L, in the two-stage process. Compared to the 3-Bardenpho process, the two-stage process removed the same amount of total COD (75-90%) from the influent, but it produced more solids (average 480 mg/L higher) containing a 1-3% higher volatile content. Also compared to the 3-Bardenpho process, the two-stage process produced sludge with higher SVIs; however, this did not lead to wash-out of solids. It was calculated through nitrogen balances that the unaccounted for nitrogen loss in the aeration tank (i.e., the amount of SND) accounted for up to 50% of the influent TKN for the two-stage process under low DO conditions and an average of 15% for the 3-Bardenpho process at a DO concentration of 3 mg/L. The experimental results suggested that aerobic denitrification and heterotrophic nitrification were the main causes of the loss in the current systems. However, anoxic microzone denitrification cannot be precluded.; According to the pared t-tests, significant differences in process performance (e.g., the percentages of nitrification and denitrification in the IACM tank) were observed for the two-stage process, when different ORP ranges were used to control the intermittent aeration; this proved that ORP range can be used as a control parameter for SND (i.e., nitrogen removal) in the IACM tank. As confirmed by the independent t-tests, acetate and methanol additions improved both N and P removals in all three processes at acetate dosages less than 50 mgCOD/L and methanol dosages less than 30 mgCOD/L, but not at high dosages (e.g., 100 mgCOD/L for acetate and 60 mgCOD/L for methanol). It was suggested that the key factor in optimizing N and P removal in the two-stage process is to maximize carbon storage in the anaerobic zone by using ORP to control the degree of nitrification in the IACM tank.; Process dynamic behavior, in response to instantaneous ammonium and nitrate shock loads, was also investigated for the three experimental systems. The dynamic responses more clearly showed that the nitrification and denitrification in the IACM tank occurred simultaneously. Based on the dynamic responses, a technique was developed to determine maximum specific nitrification rate (SNR) and maximum specific denitrification rate (SDNR). It was found that the maximum SNRs in the IACM tank (0.39-1.69 mgN{dollar}sp{lcub}+{rcub}sb{lcub}4-{rcub}{dollar}N/gMLVSS {dollar}times{dollar} h{dollar}sp{lcub}-1{rcub}){dollar} were considerably lower than those in the 3-Bardenpho aerobic zone (3.4-8.1 mgNH{dollar}sp{lcub}+{rcub}sb{lcub}4-{rcub}{dollar}N/gMLVSS {dollar}times{dollar} h{dollar}sp{lcub}-1{rcub});{dollar} this indicated that low DO conditions inhibits nitrification. Further, the maximum SDNRs in the IACM tank were in a range of 0.16-1.26 mgNO{dollar}sb{lcub}rm x-{rcub}{dollar}N/gMLVSS {dollar}times{dollar} h{dollar}sp{lcub}-1{rcub},{dollar} which were also considerably lower than that in the 3-Bardenpho anoxic zone (2.5 mgNO{dollar}sb{lcub}rm x-{rcub}{dollar}N/gMLVSS {dollar}times{dollar} h{dollar}sp{lcub}-1{rcub});{dollar} this indicated that low DO conditions, compared to anoxic conditions, inhibits denitrification.
机译:这项研究的主要目的是证明在有利于同时硝化的条件下,在两阶段间歇曝气(IA)过程中实现从生活污水中去除碳(C),氮(N)和磷(P)的可行性。和反硝化(SND)。在这项研究中证明,在上述操作条件下,两步法实现了N,P和C去除水平,类似于在3 mg / L的溶解氧(DO)浓度下进行的3-Bardenpho工艺。在两种情况下,可以同时将进水总氮浓度从24-32 mgN / L降低到6-12 mgN / L,进水总磷浓度从3.0-6.0 mgP / L降低到小于1 mgP / L。阶段过程。与3-Bardenpho工艺相比,两步工艺从进水中去除了相同量的总COD(75-90%),但产生的固体更多(平均480 mg / L),而固体含量高1-3%。易挥发的内容。另外,与3-Bardenpho工艺相比,两段工艺产生的SVI更高。但是,这并没有导致固体被洗掉。通过氮平衡计算得出,在低溶解氧条件下,两阶​​段工艺中,曝气池中氮损失的未计入(即SND的量)最多占进水TKN的50%,平均为15%在3 mg / L的DO浓度下用于3-Bardenpho工艺。实验结果表明,好氧反硝化和异养硝化是当前系统损失的主要原因。但是,不能排除缺氧的微区反硝化作用。根据配对的t检验,当使用不同的ORP范围控制间歇通气时,对于两阶段过程,观察到了过程性能的显着差异(例如IACM罐中的硝化和反硝化百分比);这证明了ORP范围可以用作IACM储罐中SND的控制参数(即脱氮)。如独立的t试验所证实,乙酸盐和甲醇的添加量在乙酸盐剂量小于50 mgCOD / L和甲醇剂量小于30 mgCOD / L时在所有三个过程中均改善了氮和磷的去除,但在高剂量下(例如,对于乙酸盐为100 mgCOD / L,对于甲醇为60 mgCOD / L。建议在两阶段工艺中优化氮和磷去除的关键因素是通过使用ORP控制IACM罐中的硝化程度来最大化厌氧区的碳存储。还针对这三个实验系统研究了响应瞬时铵盐和硝酸盐冲击负荷的过程动态行为。动态响应更清楚地表明,IACM池中的硝化作用和反硝化作用同时发生。基于动态响应,开发了一种确定最大比硝化率(SNR)和最大比反硝化率(SDNR)的技术。发现IACM储罐中的最大SNR(0.39-1.69 mgN {dollar} sp {lcub} + {rcub} sb {lcub} 4- {rcub} {dollar} N / gMLVSS {dollar} times {dollar} h {dollar} sp {lcub} -1 {rcub}){dollar}显着低于3-Bardenpho有氧区(3.4-8.1 mgNH {dollar} sp {lcub} + {rcub} sb {lcub} 4- {rcub} {dollar} N / gMLVSS {dollar} times {dollar} sp {lcub} -1 {rcub}); {dollar}这表明低溶解氧条件会抑制硝化作用。此外,IACM储罐中的最大SDNRs在0.16-1.26 mgNO {dol} sb {lcub} rm x- {rcub} {dol} N / gMLVSS {dollar} times {dollar} h {dollar} sp { lcub} -1 {rcub},{dollar}也大大低于3-Bardenpho缺氧区(2.5 mgNO {dollar} sb {lcub} rm x- {rcub} {dollar} N / gMLVSS {dollar} Times {dollar} h {dollar} sp {lcub} -1 {rcub}); {dollar}表明与低氧条件相比,低溶解氧条件会抑制反硝化作用。

著录项

  • 作者

    Zhao, Hong Wang.;

  • 作者单位

    The University of British Columbia (Canada).;

  • 授予单位 The University of British Columbia (Canada).;
  • 学科 Engineering Sanitary and Municipal.; Engineering Chemical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 283 p.
  • 总页数 283
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;化工过程(物理过程及物理化学过程);
  • 关键词

  • 入库时间 2022-08-17 11:48:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号