首页> 外文学位 >Characterization and modeling of damage in metal matrix composite microstructures.
【24h】

Characterization and modeling of damage in metal matrix composite microstructures.

机译:金属基复合材料微结构损伤的表征和建模。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation the 3D microstructures of actual metal matrix composites (MMCs) are, in the first time, characterized and modeled and compared with their 2D micrographs. A serial-sectioning technique is developed for obtaining detailed 3D microstructural images from 2D sections of particle reinforced MMCs. Equivalent microstructures with actual particle or damage replaced by ellipse or ellipsoid are computationally simulated for efficiency. The equivalent microstructures are tessellated by a particle surface based algorithm. Various 3D characterization functions are developed to identify particle size, shape, orientation and spatial distribution in the actual materials and their relation with damage and compared with 2D micrographs. Si particle reinforced aluminum composites, varied in particle volume fraction and size and deformed into different strain levels, are employed to establish the differences between 2D and 3D characterization. Results indicate that it may not be sufficient to use 2D section information for characterizing detailed microstructural features. A sensitivity analysis is conducted to explore the influence of the microstructural variables on damage. Particle size, orientation and local volume fraction are found to play the most significant roles in the damage process.; Furthermore, commercial SiC particle reinforced aluminum composites are used to catch and characterize the dominant damage resulting in the final failure of the composites and reveal how the dominant damage path is formed and evolved. Interrupted test technique is developed to catch the dominant damage path. The materials are heat treated in naturally aged and annealed conditions. The formation and evolution of the dominant damage path in naturally aged material are investigated by serial sectioning and Voronoi Cell Finite Element Method (VCFEM) modeling. The results indicate that particle cracking is the main reason of failure and the linkage of large damage formed by the linkage of microcracks in particle clustered areas results in the dominant damage path. Besides, the characteristics of the microstructure forming the dominant damage and what kind of 2D section can give better prediction to 3D microstructure are studied. Representative material elements (RME) are investigated by marked correlation function and VCFEM analysis to find the suitable RME size of the material.
机译:本文首次对实际金属基复合材料(MMCs)的3D微观结构进行了表征和建模,并与它们的2D显微照片进行了比较。开发了一种串行切片技术,用于从颗粒增强MMC的2D切片中获得详细的3D显微图像。通过计算模拟等效粒子的微观结构,其中实际粒子或损伤被椭圆或椭球体替代,以提高效率。等效的微结构通过基于粒子表面的算法进行细分。开发了各种3D表征功能,以识别实际材料中的粒径,形状,方向和空间分布及其与损伤的关系,并与2D显微照片进行比较。 Si颗粒增强的铝复合材料具有不同的颗粒体积分数和大小,并变形为不同的应变水平,用于确定2D和3D表征之间的差异。结果表明使用2D截面信息来表征详细的微结构特征可能还不够。进行敏感性分析以探索微观结构变量对损伤的影响。发现颗粒大小,取向和局部体积分数在破坏过程中起最重要的作用。此外,商品化的SiC颗粒增强铝复合材料用于捕获和表征导致复合材料最终破坏的主要破坏,并揭示主要破坏路径是如何形成和演化的。开发了中断测试技术来捕捉主要的损坏路径。在自然老化和退火条件下对材料进行热处理。通过连续切片和Voronoi细胞有限元方法(VCFEM)建模研究了自然老化材料中主要破坏路径的形成和演变。结果表明,颗粒破裂是破坏的主要原因,而由颗粒簇区域中的微裂纹的联动所形成的大损伤的联动导致了主要的损伤路径。此外,研究了形成主要破坏的显微组织的特性以及什么样的2D截面可以更好地预测3D显微组织。通过显着的相关函数和VCFEM分析来研究代表性的材料元素(RME),以找到合适的材料RME尺寸。

著录项

  • 作者

    Li, Mingshan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Applied Mechanics.; Engineering Materials Science.; Engineering Metallurgy.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 应用力学;工程材料学;冶金工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号