首页> 外文学位 >Fast multilevel algorithms for the electromagnetic analysis of quasi-planar structures.
【24h】

Fast multilevel algorithms for the electromagnetic analysis of quasi-planar structures.

机译:用于准平面结构电磁分析的快速多级算法。

获取原文
获取原文并翻译 | 示例

摘要

The analysis of electromagnetic scattering and radiation from quasi-planar structures is a topic of great current interest, owing to the wide range of applications. A host of structures and surfaces are included in the quasi-planar class, including rough surfaces, quantum well infrared photodetector gratings, planar microwave circuits, microstrip arrays, diffractive optical elements, and solar cells. The prediction of electromagnetic radiation and scattering is essential in applications involving the structures listed above. Possibly the most widespread class of techniques for this purpose is based on integral-equation formulations and method of moments (MoM) solutions. In such an approach, analysis problems are reduced to solutions of matrix equations of dimension N, where N is dependent on the electrical dimensions of the scatterer. Direct inversion of a large matrix can become impractical for even moderately large N, owing to a computational cost of O(N{dollar}sp{lcub}3{rcub}{dollar}). Furthermore, even the O(N{dollar}sp{lcub}2{rcub}{dollar}) CPU time (per iteration) and memory requirements of iterative solvers can become prohibitive for frequently encountered, large-scale, realistic problems. In this dissertation, new multilevel, rigorous, integral-equation solution techniques, based on a steepest-descent fast multipole (SDFMM) formulation, are developed for solving scattering problems involving large quasi-planar structures. These techniques promise to open the door to the full-wave analysis of complex quasi-planar structures to an extent not possible to date, owing to their O(N) CPU time (per iteration) and memory requirements. The SDFMM relies on a combined steepest-descent path and an inhomogeneous plane-wave representation of Greens' functions, and exploits the quasi-planarity of scatterers to reduce the computational complexity. In this dissertation, the SDFMM is developed in its full generality to tackle a host of electromagnetic scattering problems that find application in remote sensing, microelectronic devices, and communication systems. Large and flexible computer codes are written for analyzing scattering from perfectly conducting and penetrable rough surfaces, for studying optical absorption by quasi-random gratings in quantum-well infrared photodetectors, and for predicting radiation and scattering from large and finite microstrip antenna arrays.
机译:由于应用范围广,对准平面结构的电磁散射和辐射进行分析是当前引起人们极大兴趣的主题。准平面类中包括许多结构和表面,包括粗糙表面,量子阱红外光电探测器光栅,平面微波电路,微带阵列,衍射光学元件和太阳能电池。在涉及上述结构的应用中,电磁辐射和散射的预测至关重要。为此目的,最广泛使用的技术类别可能是基于积分方程公式和矩量法(MoM)解决方案。在这种方法中,将分析问题简化为尺寸为N的矩阵方程的解,其中N取决于散射体的电气尺寸。由于O(N {dollar} sp {lcub} 3 {rcub} {dollar})的计算成本,即使对于中等大的N,大矩阵的直接求逆也变得不切实际。此外,即使是O(N {dollar} sp {lcub} 2 {rcub} {dollar})的CPU时间(每次迭代)和迭代求解器的内存要求,对于经常遇到的大规模现实问题也变得无法满足。本文基于最速下降快速多极子(SDFMM)公式,开发了新的多级,严格的积分方程求解技术,以解决涉及大型拟平面结构的散射问题。由于它们的O(N)CPU时间(每次迭代)和内存需求,这些技术有望为迄今为止的复杂准平面结构的全波分析打开大门。 SDFMM依靠组合的最速下降路径和格林函数的不均匀平面波表示,并利用散射体的准平面性来降低计算复杂性。在本文中,SDFMM的开发具有全面性,可以解决许多电磁散射问题,这些问题已在遥感,微电子设备和通信系统中得到应用。编写了大型而灵活的计算机代码,用于分析来自完美导电和可穿透粗糙表面的散射,研究量子阱红外光电探测器中的准随机光栅的光吸收以及预测来自大型有限有限微带天线阵列的辐射和散射。

著录项

  • 作者

    Jandhyala, Vikram.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号