首页> 外文学位 >Design, fabrication and characterization of gallium nitride-based blue light-emitting diodes.
【24h】

Design, fabrication and characterization of gallium nitride-based blue light-emitting diodes.

机译:氮化镓基蓝色发光二极管的设计,制造和表征。

获取原文
获取原文并翻译 | 示例

摘要

Group III nitride semiconductors have attracted great interest due to their applications in optoelectronics and power devices. GaN-based light-emitting diodes (LEDs) have important applications in full color displays and color printing. The goal of this dissertation work is to design, fabricate and characterize GaN-based blue LEDs. The research efforts encompass material growth, device fabrication and their characterization.; The epitaxial growth of GaN and InGaN was conducted in a high speed rotating disk metal organic chemical vapor deposition (MOCVD) reactor. Material properties measured by X-ray, Hall effect, and Photoluminescence (PL) indicate that the films are of high quality. The bandgap energy of GaN was studied by thermomodulation spectroscopy. A theoretical model has been established to explain the spectrum results. Varshni coefficients of the energy gap were obtained. The broadening parameter and its temperature dependence were determined for the first time.; The thermal annealing effects on the hydrogen passivation of MOCVD grown Mg-doped p-type GaN have been studied using room and low temperature (5K) PL and secondary ion mass spectroscopy (SIMS). It was found that the hydrogen concentration increases with increasing Mg doping level in the as-deposited films. Thermal annealing releases hydrogen from the film, thus activating the Mg as an acceptor. Annealing temperatures between 700{dollar}spcirc{dollar}C and 800{dollar}circ{dollar}C give the best surface morphology, and relatively high PL intensity and electrical conductivity. Low annealing temperature ohmic contacts with low contact resistivity were developed on n-type GaN using Ti/Al metallization. It was found that Ti/Al can form ohmic contact on n-type GaN film with carrier concentration as low as 3 {dollar}times{dollar} 10{dollar}sp{lcub}16{rcub}{dollar} cm{dollar}sp{lcub}-3{rcub}.{dollar} Ni/Au metallization scheme was developed to form ohmic contact on p-type GaN. Contact resistivity as low as 7 {dollar}times{dollar} 10{dollar}sp{lcub}-3{rcub} Omega{dollar}cm{dollar}sp2{dollar} was achieved. Ni/Au metallization was also optimized as the transparent contact with low sheet resistance and high transmission.; GaN homojunction and InGaN double heterostructure (DH) LEDs were designed, fabricated, and tested. The InGaN DH LED has a typical operating voltage of 3.5 V at 20 mA. The external quantum efficiency of the InGaN/GaN multiple quantum well blue LED is 0.5% at a forward current of 20 mA.
机译:第三族氮化物半导体由于其在光电子和功率器件中的应用而引起了极大的兴趣。 GaN基发光二极管(LED)在全彩色显示器和彩色印刷中具有重要的应用。本论文的目的是设计,制造和表征基于GaN的蓝色LED。研究工作包括材料生长,器件制造及其表征。 GaN和InGaN的外延生长是在高速旋转盘金属有机化学气相沉积(MOCVD)反应器中进行的。通过X射线,霍尔效应和光致发光(PL)测得的材料性能表明,这些薄膜是高质量的。通过热调制光谱研究了GaN的带隙能。建立了理论模型来解释光谱结果。得到能隙的Varshni系数。首次确定了增宽参数及其温度依赖性。使用室温和低温(5K)PL和二次离子质谱(SIMS)研究了热退火对MOCVD生长的Mg掺杂的p型GaN氢钝化的影响。发现在沉积的膜中氢浓度随着Mg掺杂水平的增加而增加。热退火从膜中释放出氢,从而激活了镁作为受体。 700℃至800℃的退火温度提供最佳的表面形态,以及相对较高的PL强度和电导率。使用Ti / Al金属化技术在n型GaN上开发了具有低接触电阻率的低退火温度欧姆接触。已发现,Ti / Al可以在载流子浓度低至3 {dollars} {dollar} 10 {dollar} sp {lcub} 16 {rcub} {dollar} cm {dollar}的n型GaN膜上形成欧姆接触。 sp {lcub} -3 {rcub}。{美元}开发了Ni / Au金属化方案以在p型GaN上形成欧姆接触。接触电阻率低至7 {dollar} 10 {dollar} sp {lcub} -3 {rcub}Ω{dollar} cm {dollar} sp2 {dollar}。 Ni / Au金属化也被优化为具有低薄层电阻和高透射率的透明触点。设计,制造和测试了GaN同质结和InGaN双异质结构(DH)LED。 InGaN DH LED在20 mA下的典型工作电压为3.5V。在正向电流为20 mA时,InGaN / GaN多量子阱蓝色LED的外部量子效率为0.5%。

著录项

  • 作者

    Li, Yuxin.;

  • 作者单位

    Rutgers The State University of New Jersey - New Brunswick.;

  • 授予单位 Rutgers The State University of New Jersey - New Brunswick.;
  • 学科 Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 189 p.
  • 总页数 189
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号