首页> 外文学位 >Characterizing protein conformations using Copper-Based Pulsed Dipolar ESR Spectroscopy and complimentary biophysical methods.
【24h】

Characterizing protein conformations using Copper-Based Pulsed Dipolar ESR Spectroscopy and complimentary biophysical methods.

机译:使用铜基脉冲偶极ESR光谱和互补的生物物理方法表征蛋白质构象。

获取原文
获取原文并翻译 | 示例

摘要

Proteins play an important and diverse role in all living organisms. If proteins are unable to carry out their prescribed functions, the results can be problematic, or even fatal, for an organism. For example, in humans, Alzheimer's and Parkinson's are just 2 of the many diseases caused by proteins which either do not function, or function incorrectly. Proteins can also perform chemical transformations which are very difficult via synthetic methods, such as the oxidation of methane to methanol and the fixation of dinitrogen to ammonia. Understanding the mechanisms of these processes may lead to much more efficient catalysts, greatly reducing the large energy expenditures currently required.;In biochemistry, the link between structure and function has been well established, and so in order to understand the mechanisms and functions of proteins, we must understand their structures. In many cases, the structures of flexible proteins can be difficult to elucidate, especially if multiple conformations exist simultaneously. Here, we use copper-based pulsed dipolar ESR spectroscopy (PDS) and other, complimentary biophysical and biochemical methods to characterize protein conformations in flexible proteins. These include mutants of Superoxide Dismutase 1 (SOD1) which cause familial ALS, and the Drosophila melanogaster circadian clock protein Period.;By using these techniques, we show that fALS mutants of SOD1 tend to aggregate in solution as opposed to the wild-type (WT) protein which does not. Furthermore, we propose a structural mechanism by which this aggregation occurs. In the Period protein, we have discerned small differences in the conformation of mutants that mimic phosphorylation vs. the WT. These subtle changes may cause differences in circadian behavior observed in fruit flies.
机译:蛋白质在所有生物中都起着重要而多样的作用。如果蛋白质无法执行其规定的功能,那么对于生物体来说,结果可能是有问题的,甚至是致命的。例如,在人类中,阿尔茨海默氏病和帕金森氏病只是由蛋白质引起的许多疾病中的两种,这些疾病要么不起作用,要么功能不正确。蛋白质也可以执行化学转化,这是很难通过合成方法完成的,例如将甲烷氧化为甲醇,以及将二氮固定为氨。了解这些过程的机理可能会导致更高效的催化剂,从而大大减少当前所需的大量能源消耗。在生物化学中,结构与功能之间的联系已得到很好的建立,因此为了了解蛋白质的机理与功能,我们必须了解它们的结构。在许多情况下,柔性蛋白质的结构可能难以阐明,尤其是如果同时存在多个构象时。在这里,我们使用铜基脉冲偶极ESR光谱(PDS)和其他互补的生物物理和生化方法来表征柔性蛋白质中的蛋白质构象。这些包括引起家族性ALS的超氧化物歧化酶1(SOD1)突变体和果蝇果蝇生物钟蛋白时期。 WT)蛋白质却没有。此外,我们提出了一种发生这种聚集的结构机制。在Period蛋白质中,我们发现了模仿磷酸化的突变体与野生型相比,突变体的构型存在微小差异。这些细微的变化可能会导致果蝇的昼夜节律行为发生差异。

著录项

  • 作者

    Merz, Gregory Edward.;

  • 作者单位

    Cornell University.;

  • 授予单位 Cornell University.;
  • 学科 Analytical chemistry.;Biophysics.;Physical chemistry.;Biochemistry.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 139 p.
  • 总页数 139
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号