首页> 外文学位 >Fluigi: An end-to-end software workflow for microfluidic design.
【24h】

Fluigi: An end-to-end software workflow for microfluidic design.

机译:Fluigi:微流体设计的端到端软件工作流程。

获取原文
获取原文并翻译 | 示例

摘要

One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications with implications in health, materials, and sensing. Computational design methodologies allow for increased performance and reliability of these circuits. Major challenges that remain include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of "specify-design-build-test." I summarize the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow for genetic circuits. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. However, adoption of microfluidics for synthetic biology has been slow due to the expert knowledge and equipment needed to fabricate and control devices. I present an end-to-end workflow for a computer-aided-design (CAD) tool, Fluigi, for designing microfluidic devices and for integrating biological Boolean genetic circuits with microfluidics. The workflow starts with a "netlist" input describing the connectivity of microfluidic device to be designed, and proceeds through placement, routing, and design rule checking in a process analogous to electronic computer aided design (CAD). The output is an image of the device for printing as a mask for photolithography or for computer numerical control (CNC) machining. I also introduced a second workflow to allocate biological circuits to microfluidic devices and to generate the valve control scheme to enable biological computation on the device. I used the CAD workflow to generate 15 designs including gradient generators, rotary pumps, and devices for housing biological circuits. I fabricated two designs, a gradient generator with CNC machining and a device for computing a biological XOR function with multilayer soft lithography, and verified their functions with dye. My efforts here show a first end-to-end demonstration of an extensible and foundational microfluidic CAD tool from design concept to fabricated device. This work provides a platform that when completed will automatically synthesize high level functional and performance specifications into fully realized microfluidic hardware, control software, and synthetic biological wetware.
机译:合成生物学的一个目标是在活细胞中设计和建立遗传回路,以用于对健康,材料和传感有影响的一系列应用。计算设计方法可以提高这些电路的性能和可靠性。仍然存在的主要挑战包括提高工程生物系统的可扩展性和健壮性,以及简化“指定设计-构建-测试”的合成生物学工作流程并使之自动化。我总结了微流体技术的进步,特别是微流体大规模集成的进步,这些进步可以用来解决遗传电路合成生物学工作流程每个步骤所面临的挑战。微流体技术允许精确控制微型设备中生物成分的流动,因此可以提供合成生物系统更可靠和可扩展的构造。然而,由于制造和控制装置所需的专业知识和设备,将微流体技术用于合成生物学的步伐很慢。我介绍了一种计算机辅助设计(CAD)工具Fluigi的端到端工作流程,该工具用于设计微流体设备以及将生物布尔遗传电路与微流体集成在一起。工作流程从描述要设计的微流体设备的连接性的“网表”输入开始,并在类似于电子计算机辅助设计(CAD)的过程中进行布局,布线和设计规则检查。输出是用于印刷的设备的图像,以作为光刻或计算机数控(CNC)加工的掩模。我还介绍了第二个工作流程,以将生物回路分配给微流体设备,并生成阀门控制方案以实现设备上的生物计算。我使用CAD工作流程生成了15种设计,包括梯度发生器,旋转泵和用于容纳生物回路的设备。我制造了两种设计,一种是采用CNC加工的梯度发生器,另一种是使用多层软光刻技术来计算生物XOR功能的装置,并用染料验证了它们的功能。我在这里的工作显示了从设计概念到制造设备的可扩展基础微流体CAD工具的首次端到端演示。这项工作提供了一个平台,该平台完成后将自动将高级功能和性能规格合成为完全实现的微流体硬件,控制软件和合成生物湿件。

著录项

  • 作者

    Huang, Haiyao.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Computer engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 203 p.
  • 总页数 203
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号