首页> 外文学位 >Plasma species prediction using direct simulation Monte Carlo (DSMC).
【24h】

Plasma species prediction using direct simulation Monte Carlo (DSMC).

机译:使用直接模拟蒙特卡洛(DSMC)进行血浆物种预测。

获取原文
获取原文并翻译 | 示例

摘要

This paper explores the properties and behavior of gas-phase reactant and product specie involved in the plasma-enhanced chemical vapor deposition (PE-CVD) of diamond film, with the aims of improving the prediction, design, and processes related to the PE-CVD of diamond film. The goals are to (1) maximize the (H/CH3) ratio at the substrate surface, (2) maximize the methyl radical concentration (CH3) at the surface, and (3) maximize the ratio of electron projectile-to-gas particle target, all goals consistent with experimental and analytical research to date. The principal tool used in this exploration is the Direct Simulation Monte Carlo (DSMC) method. The principal case considered is that of an isentropically expanding low temperature, rarefied Argon-Hydrogen-Methane parent mixture flowing hypersonically through a high energy electron beam towards a deposition target substrate. Principal variables include parent stagnation temperature and pressure, partial pressures of the parent specie (i.e., relative concentrations), electron beam energy, and substrate surface properties. Only the gas phase plasma generation, transport, and substrate surface impact mechanics are addressed; surface chemistries are not.
机译:本文探讨了金刚石膜等离子体增强化学气相沉积(PE-CVD)中涉及的气相反应物和产物的性质和行为,旨在改善与PE-CVD相关的预测,设计和工艺。金刚石膜的CVD。目标是(1)最大化基板表面的(H / CH3)比,(2)最大化表面的甲基自由基浓度(CH3),以及(3)最大化电子弹与气体颗粒的比目标,所有目标均应符合迄今为止的实验和分析研究。本次探索中使用的主要工具是直接模拟蒙特卡洛(DSMC)方法。考虑的主要情况是等熵膨胀的低温稀疏氩气,氢,甲烷母体混合物以高超声速通过高能电子束流向沉积靶基板。主要变量包括母体停滞温度和压力,母体物种的分压(即相对浓度),电子束能量和基底表面特性。仅解决了气相等离子体的产生,传输和基材表面冲击的机理;表面化学不是。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号