首页> 外文学位 >Biomechanics of thunniform swimming: Electromyography, kinematics, and caudal tendon function in the yellowfin tuna Thunnus albacares and the skipjack tuna Katsuwonus pelamis.
【24h】

Biomechanics of thunniform swimming: Electromyography, kinematics, and caudal tendon function in the yellowfin tuna Thunnus albacares and the skipjack tuna Katsuwonus pelamis.

机译:楔形游泳的生物力学:黄鳍金枪鱼白鳍金枪鱼和the金枪鱼Katsuwonus pelamis的肌电图,运动学和尾腱功能。

获取原文
获取原文并翻译 | 示例

摘要

This research project was undertaken on two species of tropical tuna: the yellowfin Thunnus albacares and the skipjack Katsuwonus pelamis, to explore the dynamic physiological design features of tunas which underly the highly-developed thunniform propulsion mechanism. To achieve an integrated understanding of tuna swimming mechanics, a combination of electromyography, kinematics, and direct force measurements was used to probe the dynamic function of the myotomal red muscle as fish swam over a range of sustained, aerobic swimming speeds in a large water tunnel.; In both species, onset of red muscle activation proceeds sequentially in a rostro-caudal direction, while deactivation is nearly simultaneous at all sites, coincident with peak force in the caudal tendons. In yellowfin, there is complete segregation of contralateral activity, while in skipjack there is slight overlap. In both species, all red muscle on one side is active simultaneously for part of each cycle. Comparison with other fish species shows that the tuna EMG patterns culminate a spectrum of activation patterns underlying swimming modes from anguilliform to thunniform.; Coupling kinematics with EMG data revealed that muscle activation occurs after the midline has reached its maximum convexity at any given axial location; therefore, it was concluded that midline curvature is not an accurate indicator of local strain in the myotomal cone muscle. Activation and curvature waves travel down the body at the same rate, so muscle function is predicted not to vary by axial location. In yellowfin, peak force occurs in the caudal tendons as the tail tip crosses the midpoint of its sweep; in skipjack, when the tip is about three-quarters through its sweep.; Internal force measurements were made for the first time in any fish species by fitting a stainless steel buckle force transducer around the pair of deep caudal tendons on one side. At cruising speeds, mean forces were 1.3-3.8 N in yellowfin and 1.6-4.1 N in skipjack. At restrained burst speeds, forces were approximately 10 times higher. The biomaterial properties of the tendons show that they function as inextensible linkages, rather than biological springs, in transferring muscle force to the tail.
机译:该研究项目针对两种热带金枪鱼:黄鳍金枪鱼和T鱼Katsuwonus pelamis,探讨了金枪鱼的动态生理设计特征,而金枪鱼是高度发达的丁字形推进机制的基础。为了对金枪鱼的游泳机理有一个全面的了解,结合使用肌电图,运动学和直接力测量方法来探查鱼在大型水隧道中以一定的持续有氧游泳速度游动时,肌红肌的动态功能。 。;在这两个物种中,红色肌肉激活的开始顺序都在rostro-caudal方向上进行,而在所有部位几乎都同时发生了失活,这与尾腱中的峰值力相吻合。在黄鳍金枪鱼中,对侧活动完全隔离,而在skip鱼中则略有重叠。在这两个物种中,一侧的所有红色肌肉在每个周期的一部分中同时活动。与其他鱼类的比较表明,金枪鱼的肌电图模式最终导致了从an鱼形到伞形鱼的游泳模式的一系列激活模式。运动学与EMG数据的耦合显示,肌肉激活发生在中线在任何给定的轴向位置达到其最大凸度之后;因此,可以得出结论,中线曲率不是肌无力圆锥肌局部应变的准确指标。激活波和曲率波以相同的速度向下传播,因此预测肌肉功能不会因轴向位置而变化。在黄鳍金枪鱼中,当尾尖越过其扫掠的中点时,峰值力出现在尾腱中。在skip鱼中,指尖在整个扫掠中大约占四分之三。通过在一侧的一对深尾腱周围安装不锈钢带扣力传感器,首次对任何鱼类进行内力测量。在巡航速度下,黄鳍平均力为1.3-3.8 N,skip鱼平均力为1.6-4.1N。在限制的爆破速度下,力量大约高出10倍。肌腱的生物材料特性表明,它们在将肌肉力传递到尾巴时起不可伸展的作用,而不是生物弹簧的作用。

著录项

  • 作者

    Knower, Andrea Torrence.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Biology Oceanography.; Biology Animal Physiology.; Agriculture Fisheries and Aquaculture.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋生物;生理学;水产、渔业;
  • 关键词

  • 入库时间 2022-08-17 11:48:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号