首页> 外文学位 >Processing science of barium titanate.
【24h】

Processing science of barium titanate.

机译:钛酸钡的加工科学。

获取原文
获取原文并翻译 | 示例

摘要

Barium titanate and barium strontium titanate thin films were deposited on base metal foils via chemical solution deposition and radio frequency magnetron sputtering. The films were processed at elevated temperatures for densification and crystallization. Two unifying research goals underpin all experiments: (1) To improve our fundamental understanding of complex oxide processing science, and (2) to translate those improvements into materials with superior structural and electrical properties.;The relationships linking dielectric response, grain size, and thermal budget for sputtered barium strontium titanate were illustrated. (Ba 0.6Sr0.4)TiO3 films were sputtered on nickel foils at temperatures ranging between 100-400°C. After the top electrode deposition, the films were co-fired at 900°C for densification and crystallization. The dielectric properties were observed to improve with increasing sputter temperature reaching a permittivity of 1800, a tunability of 10:1, and a loss tangent of less than 0.015 for the sample sputtered at 400°C. The data can be understood using a brick wall model incorporating a high permittivity grain interior with low permittivity grain boundary. However, this high permittivity value was achieved at a grain size of 80 nm, which is typically associated with strong suppression of the dielectric response. These results clearly show that conventional models that parameterize permittivity with crystal diameter or film thickness alone are insufficiently sophisticated. Better models are needed that incorporate the influence of microstructure and crystal structure.;This thesis next explores the ability to tune microstructure and properties of chemically solution deposited BaTiO3 thin films by modulation of heat treatment thermal profiles and firing atmosphere composition. Barium titanate films were deposited on copper foils using hybrid-chelate chemistries. An in-situ gas analysis process was developed to probe the organic removal and the barium titanate phase formation. The exhaust gases emitted during the firing of barium titanate films were monitored using a residual gas analyzer (RGA) to investigate the effects of ramp rate and oxygen partial pressure. The dielectric properties including capacitor yield were correlated to the RGA data and microstructure. This information was used to tailor a thermal profile to obtain the optimum dielectric response. A ramp rate of 20°C/min and a pO2 of 10-13 atm resulted in a permittivity of 1500, a loss tangent of 0.035 and a 90% capacitor yield in 0.5 mm dot capacitors. Yield values above 90% represent a significant advantage over preexisting reports and can be attributed to an improved ability to control final porosity.;Finally, the dramatic enhancement in film density was demonstrated by understanding the processing science relationships between organic removal, crystallization, and densification in chemical solution deposition. The in situ gas analysis was used to develop an each-layer-fired approach that provides for effective organic removal, thus pore elimination, larger grain sizes, and superior densification. The combination of large grain size and high density enabled reproducing bulk-like dielectric properties in a thin film. A room temperature permittivity of 3000, a 5 muF/cm2 capacitance density, and a dielectric tunability of 15:1 were achieved.;By combining the data sets generated in this thesis with those of comparable literature reports, we were able to broadly rationalize scaling effects in polycrystalline thin films. We show that the same models successfully applied to bulk ceramic systems are appropriate for thin films, and that models involving parasitic interfacial layers are not needed. Developing better models for scaling effects were made possible solely by advancing our ability to synthesize materials thus eliminating artifacts and extrinsic effects.
机译:钛酸钡和钛酸锶锶薄膜通过化学溶液沉积和射频磁控溅射沉积在贱金属箔上。将膜在升高的温度下处理以致密化和结晶。所有实验均以两个统一的研究目标为基础:(1)增进我们对复杂氧化物加工科学的基本了解,以及(2)将这些改进转化为具有优异结构和电性能的材料。;介电响应,晶粒尺寸和说明了溅射钛酸锶钡的热收支。 (Ba 0.6Sr0.4)TiO3薄膜在100-400°C之间的温度下溅射在镍箔上。在顶部电极沉积之后,将膜在900℃下共烧以致密化和结晶。对于400℃下溅射的样品,观察到介电性能随溅射温度的提高而提高,达到1800的介电常数,10:1的可调谐性和小于0.015的损耗角正切。可以使用结合了高介电常数晶粒内部和低介电常数晶粒边界的砖墙模型来理解数据。但是,这种高介电常数值是在80 nm的晶粒尺寸上实现的,这通常与对介电响应的强烈抑制有关。这些结果清楚地表明,仅用晶体直径或膜厚度来参数化介电常数的常规模型不够复杂。需要更好的模型来考虑微观结构和晶体结构的影响。;本论文接下来探讨了通过调节热处理温度分布和焙烧气氛成分来调节化学溶液沉积的BaTiO3薄膜的微观结构和性能的能力。使用杂化螯合物化学方法将钛酸钡薄膜沉积在铜箔上。开发了一种原位气体分析方法来探测有机物的去除和钛酸钡相的形成。使用残留气体分析仪(RGA)监测钛酸钡薄膜燃烧过程中排放的废气,以研究升温速率和氧气分压的影响。包括电容器成品率在内的介电性能与RGA数据和微观结构相关。该信息用于调整热曲线以获得最佳介电响应。 20 mmC / min的升温速率和10-13 atm的pO2导致介电常数为1500,损耗角正切为0.035,0.5 mm点电容器的电容器产率为90%。高于90%的屈服值表示相对于现有报告的显着优势,并且可以归因于提高的控制最终孔隙率的能力。最后,通过了解有机去除,结晶和致密化之间的加工科学关系证明了膜密度的显着提高。在化学溶液沉积中。原位气体分析用于开发一种逐层燃烧的方法,该方法可有效去除有机物,从而消除孔眼,增大晶粒尺寸并实现出色的致密化。大晶粒尺寸和高密度的组合使得能够在薄膜中再现块状介电特性。达到了3000的室温介电常数,5μF/ cm2的电容密度和15:1的介电可调性。通过将本论文中产生的数据集与可比较的文献报道相结合,我们能够广泛地合理化缩放多晶薄膜中的效应。我们表明,成功应用于块状陶瓷系统的相同模型适用于薄膜,并且不需要涉及寄生界面层的模型。仅通过提高我们合成材料的能力就可以开发出更好的缩放效果模型,从而消除了伪影和外在效果。

著录项

  • 作者

    Aygun, Seymen Murat.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 216 p.
  • 总页数 216
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

  • 入库时间 2022-08-17 11:37:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号